Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Michael Söderman x
  • Refine by Access: all x
  • By Author: Lax, Ingmar x
Clear All Modify Search
Restricted access

Bengt Karlsson, Hidefumi Jokura, Masaaki Yamamoto, Michael Söderman, and Ingmar Lax

Object

The results of a novel radiosurgical approach to treat large arteriovenous malformations (AVMs) with repeated radiosurgery are presented and discussed.

Methods

The outcome was studied following repeated Gamma Knife surgery (GKS) for large AVMs, defined as a nidus volume of 9 ml or more. The philosophy was to treat the whole AVM with a low dose of radiation (≥ 10 Gy), and to repeat the treatment if the AVM shrank but was not obliterated. The study included 133 patients with AVMs treated at one of three different institutions. Clinical information was available for all patients, and complete radiological follow-up was available in 89 patients after the first treatment, and in 19 after the second treatment.

Results

The estimated obliteration rate following repeated GKS was 62%. Four patients (3%) developed neurological deficits caused by the radiation, whereas five others (4%) developed cystic changes. The annual incidence of hemorrhage was high (7%), of which 35% occurred within the 1st year after the first treatment.

Conclusions

Repeated radiosurgery seems to be a viable option for some AVMs considered to be too large for conventional radiosurgical treatment. The incidence of posttreatment hemorrhages seems to be a larger clinical problem than radiation-induced complications.

Restricted access

Bengt Karlsson, Ingmar Lax, Masaaki Yamamoto, Michael Söderman, Hidefumi Jokura, Charles Rosen, and Julian Bailes

Object

The authors sought to assess the relationship between obliteration rate and different dose parameters following fractionated radiotherapy for arteriovenous malformations (AVMs). A comparison of the results of radiosurgery and radiotherapy for AVMs was made to calculate the best fit α/β value, which would then be used as a model for predicting the treatment outcome, independent of the number of fractions applied.

Methods

Data from 1453 patients were analyzed: 1154 treated with radiosurgery and 300 with fractionated radiotherapy. The relationships between dose and obliteration rate after 3 years were calculated, and the best fit curve to the empirical results was defined. The higher the dose per fraction, biologically effective dose, and the lower the total dose, the higher the obliteration rate. The isoeffective doses when comparing radiotherapy and radiosurgery independent of the α/β value could not be defined. The dose per fraction had the best predictive value, independent of the number of fractions.

Conclusions

Dose per fraction seems to be the decisive parameter for the treatment response following both radiotherapy and radiosurgery. A larger number of fractions did not increase the obliteration rate. The data indicate that higher doses per fraction should be used when irradiating AVMs.