Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Michael W. McDermott x
  • Refine by Access: all x
  • By Author: Lau, Darryl x
Clear All Modify Search
Full access

Darryl Lau, Shawn L. Hervey-Jumper, Susan Chang, Annette M. Molinaro, Michael W. McDermott, Joanna J. Phillips, and Mitchel S. Berger

OBJECT

There is evidence that 5-aminolevulinic acid (ALA) facilitates greater extent of resection and improves 6-month progression-free survival in patients with high-grade gliomas. But there remains a paucity of studies that have examined whether the intensity of ALA fluorescence correlates with tumor cellularity. Therefore, a Phase II clinical trial was undertaken to examine the correlation of intensity of ALA fluorescence with the degree of tumor cellularity.

METHODS

A single-center, prospective, single-arm, open-label Phase II clinical trial of ALA fluorescence-guided resection of high-grade gliomas (Grade III and IV) was held over a 43-month period (August 2010 to February 2014). ALA was administered at a dose of 20 mg/kg body weight. Intraoperative biopsies from resection cavities were collected. The biopsies were graded on a 4-point scale (0 to 3) based on ALA fluorescence intensity by the surgeon and independently based on tumor cellularity by a neuropathologist. The primary outcome of interest was the correlation of ALA fluorescence intensity to tumor cellularity. The secondary outcome of interest was ALA adverse events. Sensitivities, specificities, positive predictive values (PPVs), negative predictive values (NPVs), and Spearman correlation coefficients were calculated.

RESULTS

A total of 211 biopsies from 59 patients were included. Mean age was 53.3 years and 59.5% were male. The majority of biopsies were glioblastoma (GBM) (79.7%). Slightly more than half (52.5%) of all tumors were recurrent. ALA intensity of 3 correlated with presence of tumor 97.4% (PPV) of the time. However, absence of ALA fluorescence (intensity 0) correlated with the absence of tumor only 37.7% (NPV) of the time. For all tumor types, GBM, Grade III gliomas, and recurrent tumors, ALA intensity 3 correlated strongly with cellularity Grade 3; Spearman correlation coefficients (r) were 0.65, 0.66, 0.65, and 0.62, respectively. The specificity and PPV of ALA intensity 3 correlating with cellularity Grade 3 ranged from 95% to 100% and 86% to 100%, respectively. In biopsies without tumor (cellularity Grade 0), 35.4% still demonstrated ALA fluorescence. Of those biopsies, 90.9% contained abnormal brain tissue, characterized by reactive astrocytes, scattered atypical cells, or inflammation, and 8.1% had normal brain. In nonfluorescent (ALA intensity 0) biopsies, 62.3% had tumor cells present. The ALA-associated complication rate among the study cohort was 3.4%.

CONCLUSIONS

The PPV of utilizing the most robust ALA fluorescence intensity (lava-like orange) as a predictor of tumor presence is high. However, the NPV of utilizing the absence of fluorescence as an indicator of no tumor is poor. ALA intensity is a strong predictor for degree of tumor cellularity for the most fluorescent areas but less so for lower ALA intensities. Even in the absence of tumor cells, reactive changes may lead to ALA fluorescence.

Restricted access

Ankush Chandra, Jacob S. Young, Cecilia Dalle Ore, Fara Dayani, Darryl Lau, Harsh Wadhwa, Jonathan W. Rick, Alan T. Nguyen, Michael W. McDermott, Mitchel S. Berger, and Manish K. Aghi

OBJECTIVE

Glioblastoma (GBM) carries a high economic burden for patients and caregivers, much of which is associated with initial surgery. The authors investigated the impact of insurance status on the inpatient hospital costs of surgery for patients with GBM.

METHODS

The authors conducted a retrospective review of patients with GBM (2010–2015) undergoing their first resection at the University of California, San Francisco, and corresponding inpatient hospital costs.

RESULTS

Of 227 patients with GBM (median age 62 years, 37.9% females), 31 (13.7%) had Medicaid, 94 (41.4%) had Medicare, and 102 (44.9%) had private insurance. Medicaid patients had 30% higher overall hospital costs for surgery compared to non-Medicaid patients ($50,285 vs $38,779, p = 0.01). Medicaid patients had higher intensive care unit (ICU; p < 0.01), operating room (p < 0.03), imaging (p < 0.001), room and board (p < 0001), and pharmacy (p < 0.02) costs versus non-Medicaid patients. Medicaid patients had significantly longer overall and ICU lengths of stay (6.9 and 2.6 days) versus Medicare (4.0 and 1.5 days) and privately insured patients (3.9 and 1.8 days, p < 0.01). Medicaid patients had similar comorbidity rates to Medicare patients (67.8% vs 68.1%), and both groups had higher comorbidity rates than privately insured patients (37.3%, p < 0.0001). Only 67.7% of Medicaid patients had primary care providers (PCPs) versus 91.5% of Medicare and 86.3% of privately insured patients (p = 0.009) at the time of presentation. Tumor diameter at diagnosis was largest for Medicaid (4.7 cm) versus Medicare (4.1 cm) and privately insured patients (4.2 cm, p = 0.03). Preoperative (70 vs 90, p = 0.02) and postoperative (80 vs 90, p = 0.03) Karnofsky Performance Scale (KPS) scores were lowest for Medicaid versus non-Medicaid patients, while in subgroup analysis, postoperative KPS score was lowest for Medicaid patients (80, vs 90 for Medicare and 90 for private insurance; p = 0.03). Medicaid patients had significantly shorter median overall survival (10.7 months vs 12.8 months for Medicare and 15.8 months for private insurance; p = 0.02). Quality-adjusted life year (QALY) scores were 0.66 and 1.05 for Medicaid and non-Medicaid patients, respectively (p = 0.036). The incremental cost per QALY was $29,963 lower for the non-Medicaid cohort.

CONCLUSIONS

Patients with GBMs and Medicaid have higher surgical costs, longer lengths of stay, poorer survival, and lower QALY scores. This study indicates that these patients lack PCPs, have more comorbidities, and present later in the disease course with larger tumors; these factors may drive the poorer postoperative function and greater consumption of hospital resources that were identified. Given limited resources and rising healthcare costs, factors such as access to PCPs, equitable adjuvant therapy, and early screening/diagnosis of disease need to be improved in order to improve prognosis and reduce hospital costs for patients with GBM.

Free access

Ankush Chandra, Jonathan W. Rick, Cecilia Dalle Ore, Darryl Lau, Alan T. Nguyen, Diego Carrera, Alexander Bonte, Annette M. Molinaro, Philip V. Theodosopoulos, Michael W. McDermott, Mitchel S. Berger, and Manish K. Aghi

OBJECTIVE

Glioblastoma (GBM) is an aggressive brain malignancy with a short overall patient survival, yet there remains significant heterogeneity in outcomes. Although access to health care has previously been linked to impact on prognosis in several malignancies, this question remains incompletely answered in GBM.

METHODS

This study was a retrospective analysis of 354 newly diagnosed patients with GBM who underwent first resection at the authors’ institution (2007–2015).

RESULTS

Of the 354 patients (median age 61 years, and 37.6% were females), 32 (9.0%) had no insurance, whereas 322 (91.0%) had insurance, of whom 131 (40.7%) had Medicare, 45 (14%) had Medicaid, and 146 (45.3%) had private insurance. On average, insured patients survived almost 2-fold longer (p < 0.0001) than those who were uninsured, whereas differences between specific insurance types did not influence survival. The adjusted hazard ratio (HR) for death was higher in uninsured patients (HR 2.27 [95% CI 1.49–3.33], p = 0.0003). Age, mean household income, tumor size at diagnosis, and extent of resection did not differ between insured and uninsured patients, but there was a disparity in primary care physician (PCP) status—none of the uninsured patients had PCPs, whereas 72% of insured patients had PCPs. Postoperative adjuvant treatment rates with temozolomide (TMZ) and radiation therapy (XRT) were significantly less in uninsured (TMZ in 56.3%, XRT in 56.3%) than in insured (TMZ in 75.2%, XRT in 79.2%; p = 0.02 and p = 0.003) patients. Insured patients receiving both agents had better prognosis than uninsured patients receiving the same treatment (9.1 vs 16.34 months; p = 0.025), suggesting that the survival effect in insured patients could only partly be explained by higher treatment rates. Moreover, having a PCP increased survival among the insured cohort (10.7 vs 16.1 months, HR 1.65 [95% CI 1.27–2.15]; p = 0.0001), which could be explained by significant differences in tumor diameter at initial diagnosis between patients with and without PCPs (4.3 vs 4.8 cm, p = 0.003), and a higher rate of clinical trial enrollment, suggesting a critical role of PCPs for a timelier diagnosis of GBM and proactive cancer care management.

CONCLUSIONS

Access to health care is a strong determinant of prognosis in newly diagnosed patients with GBM. Any type of insurance coverage and having a PCP improved prognosis in this patient cohort. Higher rates of treatment with TMZ plus XRT, clinical trial enrollment, fewer comorbidities, and early diagnosis may explain survival disparities. Lack of health insurance or a PCP are major challenges within the health care system, which, if improved upon, could favorably impact the prognosis of patients with GBM.