Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: Mitchel S. Berger x
  • Refine by Access: all x
  • By Author: Han, Seunggu J. x
Clear All Modify Search
Full access

Stephen T. Magill, Seunggu J. Han, Jing Li, and Mitchel S. Berger

OBJECTIVE

Brain tumors involving the primary motor cortex are often deemed unresectable due to the potential neurological consequences that result from injury to this region. Nevertheless, we have challenged this dogma for many years and used asleep, as well as awake, intraoperative stimulation mapping to maximize extent of resection. It remains unclear whether these tumors can be resected with acceptable morbidity, whether performing the surgery with the patient awake or asleep impacts extent of resection, and how stimulation mapping influences outcomes.

METHODS

A retrospective chart review was performed on the senior author’s cohort to identify patients treated between 1998 and 2016 who underwent resection of tumors that were located within the primary motor cortex. Clinical notes, operative reports, and radiographic images were reviewed to identify intraoperative stimulation mapping findings and functional outcomes following tumor resection. Extent of resection was quantified volumetrically. Characteristics of patients were analyzed to identify factors associated with postoperative motor deficits.

RESULTS

Forty-nine patients underwent 53 resections of tumors located primarily within the motor cortex. Stimulation mapping was performed in all cases. Positive cortical sites for motor response were identified in 91% of cases, and subcortical sites in 74%. Awake craniotomy was performed in 65% of cases, while 35% were done under general anesthesia. The mean extent of resection was 91%. There was no statistically significant difference in extent of resection in cases done awake compared with those done under general anesthesia. New or worsened postoperative motor deficits occurred in 32 patients (60%), and 20 patients (38%) had a permanent deficit. Of the permanent deficits, 14 were mild, 4 were moderate, and 2 were severe (3.8% of cases). Decreased intraoperative motor response and diffusion restriction on postoperative MRI were associated with permanent deficit. Awake motor mapping surgery was associated with increased diffusion signal on postoperative MRI.

CONCLUSIONS

Resection of tumors from the primary motor cortex is associated with an increased risk of motor deficit, but most of these deficits are transient or mild and have little functional impact. Excellent extent of resection can be achieved with intraoperative stimulation mapping, suggesting that these tumors are indeed amenable to resection and should not be labeled unresectable. Injury to small perforating or en passage blood vessels was the most common cause of infarction that led to moderate or severe deficits. Awake motor mapping was not superior to mapping done under general anesthesia with regard to long-term functional outcome.

Full access

Ramin A. Morshed, Seunggu J. Han, Darryl Lau, and Mitchel S. Berger

Surgery guided by 5-aminolevulinic acid (ALA) fluorescence has become a valuable adjunct in the resection of malignant intracranial gliomas. Furthermore, the fluorescence intensity of biopsied areas of a resection cavity correlates with histological identification of tumor cells. However, in the case of lesions deep within a resection cavity, light penetration may be suboptimal, resulting in less excitation of 5-ALA metabolites, leading to decreased fluorescence emission. To address this obstacle, the authors report on the use of a 400-nm wavelength fiber-optic lighted suction instrument that can be used both during resection of a tumor and to provide direct light to deeper areas of a resection cavity. In the presented case, this wavelength-specific lighted suction instrument improved the fluorescence intensity of patches of malignant tissue within the resection cavity. This technique may further improve the utility of 5-ALA in identifying tumor-infiltrated tissue for deep-seated lesions. Additionally, this tool may have implications for scoring systems that correlate 5-ALA fluorescence intensity with histological identification of malignant cells.

Full access

Darryl Lau, Shawn L. Hervey-Jumper, Seunggu J. Han, and Mitchel S. Berger

OBJECTIVE

There is ample evidence that extent of resection (EOR) is associated with improved outcomes for glioma surgery. However, it is often difficult to accurately estimate EOR intraoperatively, and surgeon accuracy has yet to be reviewed. In this study, the authors quantitatively assessed the accuracy of intraoperative perception of EOR during awake craniotomy for tumor resection.

METHODS

A single-surgeon experience of performing awake craniotomies for tumor resection over a 17-year period was examined. Retrospective review of operative reports for quantitative estimation of EOR was recorded. Definitive EOR was based on postoperative MRI. Analysis of accuracy of EOR estimation was examined both as a general outcome (gross-total resection [GTR] or subtotal resection [STR]), and quantitatively (5% within EOR on postoperative MRI). Patient demographics, tumor characteristics, and surgeon experience were examined. The effects of accuracy on motor and language outcomes were assessed.

RESULTS

A total of 451 patients were included in the study. Overall accuracy of intraoperative perception of whether GTR or STR was achieved was 79.6%, and overall accuracy of quantitative perception of resection (within 5% of postoperative MRI) was 81.4%. There was a significant difference (p = 0.049) in accuracy for gross perception over the 17-year period, with improvement over the later years: 1997–2000 (72.6%), 2001–2004 (78.5%), 2005–2008 (80.7%), and 2009–2013 (84.4%). Similarly, there was a significant improvement (p = 0.015) in accuracy of quantitative perception of EOR over the 17-year period: 1997–2000 (72.2%), 2001–2004 (69.8%), 2005–2008 (84.8%), and 2009–2013 (93.4%). This improvement in accuracy is demonstrated by the significantly higher odds of correctly estimating quantitative EOR in the later years of the series on multivariate logistic regression. Insular tumors were associated with the highest accuracy of gross perception (89.3%; p = 0.034), but lowest accuracy of quantitative perception (61.1% correct; p < 0.001) compared with tumors in other locations. Even after adjusting for surgeon experience, this particular trend for insular tumors remained true. The absence of 1p19q co-deletion was associated with higher quantitative perception accuracy (96.9% vs 81.5%; p = 0.051). Tumor grade, recurrence, diagnosis, and isocitrate dehydrogenase-1 (IDH-1) status were not associated with accurate perception of EOR. Overall, new neurological deficits occurred in 8.4% of cases, and 42.1% of those new neurological deficits persisted after the 3-month follow-up. Correct quantitative perception was associated with lower postoperative motor deficits (2.4%) compared with incorrect perceptions (8.0%; p = 0.029). There were no detectable differences in language outcomes based on perception of EOR.

CONCLUSIONS

The findings from this study suggest that there is a learning curve associated with the ability to accurately assess intraoperative EOR during glioma surgery, and it may take more than a decade to be truly proficient. Understanding the factors associated with this ability to accurately assess EOR will provide safer surgeries while maximizing tumor resection.

Restricted access

Ramin A. Morshed, Jacob S. Young, Seunggu J. Han, Shawn L. Hervey-Jumper, and Mitchel S. Berger

OBJECTIVE

Many surgical approaches have been described for lesions within the mesial temporal lobe (MTL), but there are limited reports on the transcortical approach for the resection of tumors within this region. Here, the authors describe the technical considerations and functional outcomes in patients undergoing transcortical resection of gliomas of the MTL.

METHODS

Patients with a glioma (WHO grades I–IV) located within the MTL who had undergone the transcortical approach in the period between 1998 and 2016 were identified through the University of California, San Francisco (UCSF) tumor registry and were classified according to tumor location: preuncus, uncus, hippocampus/parahippocampus, and various combinations of the former groups. Patient and tumor characteristics and outcomes were determined from operative, radiology, pathology, and other clinical reports that were available through the UCSF electronic medical record.

RESULTS

Fifty patients with low- or high-grade glioma were identified. The mean patient age was 46.8 years, and the mean follow-up was 3 years. Seizures were the presenting symptom in 82% of cases. Schramm types A, C, and D represented 34%, 28%, and 38% of the tumors, and the majority of lesions were located at least in part within the hippocampus/parahippocampus. For preuncus and preuncus/uncus tumors, a transcortical approach through the temporal pole allowed for resection. For most tumors of the uncus and those extending into the hippocampus/parahippocampus, a corticectomy was performed within the middle and/or inferior temporal gyri to approach the lesion. To locate the safest corridor for the corticectomy, language mapping was performed in 96.9% of the left-sided tumor cases, and subcortical motor mapping was performed in 52% of all cases. The mean volumetric extent of resection of low- and high-grade tumors was 89.5% and 96.0%, respectively, and did not differ by tumor location or Schramm type. By 3 months’ follow-up, 12 patients (24%) had residual deficits, most of which were visual field deficits. Three patients with left-sided tumors (9.4% of dominant-cortex lesions) experienced word-finding difficulty at 3 months after resection, but 2 of these patients demonstrated complete resolution of symptoms by 1 year.

CONCLUSIONS

Mesial temporal lobe gliomas, including larger Schramm type C and D tumors, can be safely and aggressively resected via a transcortical equatorial approach when used in conjunction with cortical and subcortical mapping.

Full access

Ramin A. Morshed, Jacob S. Young, Seunggu J. Han, Shawn L. Hervey-Jumper, and Mitchel S. Berger

OBJECTIVE

Greater extent of resection (EOR) improves overall survival and progression-free survival for patients with low- and high-grade glioma. While resection for newly diagnosed insular gliomas can be performed with minimal morbidity, perioperative morbidity is not clearly defined for patients undergoing a repeat resection for recurrent insular gliomas. In this study the authors report on tumor characteristics, tumor EOR, and functional outcomes in patients undergoing reoperation for recurrent insular glioma.

METHODS

Adult patients with insular gliomas (WHO grades II–IV) who underwent index resection followed by reoperation were identified through the University of California San Francisco Brain Tumor Center. Treatment history and functional outcomes were collected retrospectively from the electronic medical record. Pre- and postoperative tumor volumes were quantified using software with region-of-interest analysis based on FLAIR and T1-weighted postgadolinium sequences from pre- and postoperative MRI.

RESULTS

Forty-four patients (63.6% male, 36.4% female) undergoing 49 reoperations for recurrent insular tumors were identified with a median follow-up of 741 days. Left- and right-sided tumors comprised 52.3% and 47.7% of the cohort, respectively. WHO grade II, III, and IV gliomas comprised 46.9%, 28.6%, and 24.5% of the cohort, respectively. Ninety-five percent (95.9%) of cases involved language and/or motor mapping. Median EOR of the insular component of grade II, III, and IV tumors were 82.1%, 75.0%, and 94.6%, respectively. EOR during reoperation was not impacted by Berger-Sanai insular zone or tumor side. At the time of reoperation, 44.9% of tumors demonstrated malignant transformation to a higher WHO grade. Ninety-day postoperative assessment confirmed that 91.5% of patients had no new postoperative deficit attributable to surgery. Of those with new deficits, 3 (6.4%) had a visual field cut and 1 (2.1%) had hemiparesis (strength grade 1–2/5). The presence of a new postoperative deficit did not vary with EOR.

CONCLUSIONS

Recurrent insular gliomas, regardless of insular zone and pathology, may be reoperated on with an overall acceptable degree of resection and safety despite their anatomical and functional complexities. The use of intraoperative mapping utilizing asleep or awake methods may reduce morbidity to acceptable rates despite prior surgery.

Free access

John D. Rolston, Seunggu J. Han, Catherine Y. Lau, Mitchel S. Berger, and Andrew T. Parsa

Object

Surgical complications increase the cost of health care worldwide and directly contribute to patient morbidity and mortality. In an effort to mitigate morbidity and incentivize best practices, stakeholders such as health insurers and the US government are linking reimbursement to patient outcomes. In this study the authors analyzed a national database to determine basic metrics of how comorbidities specifically affect the subspecialty of neurosurgery.

Methods

Data on 1,777,035 patients for the years 2006–2011 were acquired from the American College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) database. Neurosurgical cases were extracted by querying the data for which the surgical specialty was listed as “neurological surgery.” Univariate statistics were calculated using the chi-square test, and 95% confidence intervals were determined for the resultant risk ratios. A multivariate model was constructed using significant variables from the univariate analysis (p < 0.05) with binary logistic regression.

Results

Over 38,000 neurosurgical cases were analyzed, with complications occurring in 14.3%. Cranial cases were 2.6 times more likely to have complications than spine cases, and African Americans and Asians/Pacific Islanders were also at higher risk. The most frequent complications were bleeding requiring transfusion (4.5% of patients) and reoperation within 30 days of the initial operation (4.3% of patients), followed by failure to wean from mechanical ventilation postoperatively (2.5%). Significant predictors of complications included preoperative stroke, sepsis, blood transfusion, and chronic steroid use.

Conclusions

Understanding the landscape of neurosurgical complications will allow better targeting of the most costly and harmful complications of preventive measures. Data from the ACS NSQIP database provide a starting point for developing paradigms of improved care of neurosurgical patients.

Full access

Dario J. Englot, Stephen T. Magill, Seunggu J. Han, Edward F. Chang, Mitchel S. Berger, and Michael W. McDermott

OBJECT

Meningioma is the most common benign intracranial tumor, and patients with supratentorial meningioma frequently suffer from seizures. The rates and predictors of seizures in patients with meningioma have been significantly under-studied, even in comparison with other brain tumor types. Improved strategies for the prediction, treatment, and prevention of seizures in patients with meningioma is an important goal, because tumor-related epilepsy significantly impacts patient quality of life.

METHODS

The authors performed a systematic review of PubMed for manuscripts published between January 1980 and September 2014, examining rates of pre- and postoperative seizures in supratentorial meningioma, and evaluating potential predictors of seizures with separate meta-analyses.

RESULTS

The authors identified 39 observational case series for inclusion in the study, but no controlled trials. Preoperative seizures were observed in 29.2% of 4709 patients with supratentorial meningioma, and were significantly predicted by male sex (OR 1.74, 95% CI 1.30–2.34); an absence of headache (OR 1.77, 95% CI 1.04–3.25); peritumoral edema (OR 7.48, 95% CI 6.13–9.47); and non–skull base location (OR 1.77, 95% CI 1.04–3.25). After surgery, seizure freedom was achieved in 69.3% of 703 patients with preoperative epilepsy, and was more than twice as likely in those without peritumoral edema, although an insufficient number of studies were available for formal meta-analysis of this association. Of 1085 individuals without preoperative epilepsy who underwent resection, new postoperative seizures were seen in 12.3% of patients. No difference in the rate of new postoperative seizures was observed with or without perioperative prophylactic anticonvulsants.

CONCLUSIONS

Seizures are common in supratentorial meningioma, particularly in tumors associated with brain edema, and seizure freedom is a critical treatment goal. Favorable seizure control can be achieved with resection, but evidence does not support routine use of prophylactic anticonvulsants in patients without seizures. Limitations associated with systematic review and meta-analysis should be considered when interpreting these results.

Full access

Derek G. Southwell, Harjus S. Birk, Seunggu J. Han, Jing Li, Jeffrey W. Sall, and Mitchel S. Berger

OBJECTIVE

Maximal safe resection is a primary objective in the management of gliomas. Despite this objective, surgeons and referring physicians may, on the basis of radiological studies alone, assume a glioma to be unresectable. Because imaging studies, including functional MRI, may not localize brain functions (such as language) with high fidelity, this simplistic approach may exclude some patients from what could be a safe resection. Intraoperative direct electrical stimulation (DES) allows for the accurate localization of functional areas, thereby enabling maximal resection of tumors, including those that may appear inoperable based solely on radiological studies. In this paper the authors describe the extent of resection (EOR) and functional outcomes following resections of tumors deemed inoperable by referring physicians and neurosurgeons.

METHODS

The authors retrospectively examined the cases of 58 adult patients who underwent glioma resection within 6 months of undergoing a brain biopsy of the same lesion at an outside hospital. All patients exhibited unifocal supratentorial disease and preoperative Karnofsky Performance Scale scores ≥ 70. The EOR and 6-month functional outcomes for this population were characterized.

RESULTS

Intraoperative DES mapping was performed on 96.6% (56 of 58) of patients. Nearly half of the patients (46.6%, 27 of 58) underwent an awake surgical procedure with DES. Overall, the mean EOR was 87.6% ± 13.6% (range 39.0%–100%). Gross-total resection (resection of more than 99% of the preoperative tumor volume) was achieved in 29.3% (17 of 58) of patients. Subtotal resection (95%–99% resection) and partial resection (PR; < 95% resection) were achieved in 12.1% (7 of 58) and 58.6% (34 of 58) of patients, respectively. Of the cases that involved PR, the mean EOR was 79.4% ± 12.2%. Six months after surgery, no patient was found to have a new postoperative neurological deficit. The majority of patients (89.7%, 52 of 58) were free of neurological deficits both pre- and postoperatively. The remainder of patients exhibited either residual but stable deficits (5.2%, 3 of 58) or complete correction of preoperative deficits (5.2%, 3 of 58).

CONCLUSIONS

The use of DES enabled maximal safe resections of gliomas deemed inoperable by referring neurosurgeons. With rare exceptions, tumor resectability cannot be determined solely by radiological studies.

Free access

Catherine Y. Lau, S. Ryan Greysen, Rita I. Mistry, Seunggu J. Han, Praveen V. Mummaneni, and Mitchel S. Berger

Object

Surgical and medical errors result from failures in communication and handoffs as well as lack of standardization in clinical protocols and safety practices. Checklists, simulation training, and teamwork training have been shown to decrease adverse patient events and increase the safety culture of surgical teams. The goal of this project was to simplify and standardize perioperative patient safety practices and team communication processes within operative neurosurgery through the creation of an educational safety video targeted at a neurosurgical provider audience.

Methods

A multidisciplinary group consisting of neurosurgeons, anesthesiologists, nurses, neuromonitoring specialists, quality champions, and a professional video production company met over several months in an iterative process to 1) determine the overall objectives of the video, 2) decide on the content and format of the video, 3) modify the proposed content and format based on stakeholder feedback, and 4) record the video and complete final revisions during postproduction.

Results

The video was launched within the authors' institution in July 2012 in conjunction with ongoing research projects to study the effects of the video on 1) multidisciplinary providers' knowledge of perioperative safety practices, 2) provider safety attitudes and safety culture in the operating room, and 3) provider behavior in performing predetermined elements of the preoperative timeout and postoperative debrief.

Conclusions

The neurosurgical perioperative safety video can serve as a national model for how quality champions can drive changes in safety culture and provider behavior among multidisciplinary perioperative patient care teams. Ongoing research is being performed to assess the impact of the video on provider knowledge, behavior, and safety attitudes and culture.

Full access

Seunggu J. Han, Ramin A. Morshed, Irene Troncon, Kesshi M. Jordan, Roland G. Henry, Shawn L. Hervey-Jumper, and Mitchel S. Berger

OBJECTIVE

Herein, the authors report their experience with intraoperative stimulation mapping to locate the descending subcortical motor pathways in patients undergoing surgery for hemispheric gliomas within or adjacent to the rolandic cortex, with particular description of the morbidity and functional outcomes associated with this technique.

METHODS

This is a retrospective analysis of patients who, in the period between 1997 and 2016, had undergone resection of hemispheric perirolandic gliomas within or adjacent to descending motor pathways. Data regarding intraoperative stimulation mapping and patient postoperative neurological status were collected.

RESULTS

Of 702 patients, stimulation mapping identified the descending motor pathways in 300 cases (43%). A new or worsened motor deficit was seen postoperatively in 210 cases (30%). Among these 210 cases, there was improvement in motor function to baseline levels by 3 months postoperatively in 161 cases (77%), whereas the deficit remained in 49 cases (23%). The majority (65%) of long-term deficits (persisting beyond 3 months) were mild or moderate (antigravity strength or better). On multivariate analysis, patients in whom the subcortical motor pathways had been identified with stimulation mapping during surgery were more likely to develop an additional and/or worsened motor deficit postoperatively than were those in whom the subcortical pathways had not been found (45% vs 19%, respectively, p < 0.001). This difference remained when considering the likelihood of a long-term deficit (i.e., persisting > 3 months; 12% vs 3.2%, p < 0.001). A higher tumor grade and the presence of a preoperative motor deficit were also associated with higher rates of motor deficits persisting long-term. A region of restricted diffusion adjacent to the resection cavity was seen in 20 patients with long-term deficits (41%) and was more common in cases in which the motor pathways were not identified (69%). Long-term deficits that occur in settings in which the subcortical motor pathways are not identified seem in large part due to ischemic injury to descending tracts.

CONCLUSIONS

Stimulation mapping allows surgeons to identify the descending motor pathways during resection of tumors in perirolandic regions and to attain an acceptable rate of morbidity in these high-risk cases.