Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Jau-Ching Wu x
  • Journal of Neurosurgery: Spine x
  • All content x
  • By Author: Chen, Yu-Chun x
Clear All Modify Search
Restricted access

Jau-Ching Wu, Wen-Cheng Huang, Yun-An Tsai, Yu-Chun Chen, and Henrich Cheng

Object

The aim of this study was to assess functional outcomes of nerve repair using acidic fibroblast growth factor (FGF) in patients with cervical spinal cord injury (SCI).

Methods

Nine patients who had cervical SCI for longer than 5 months were included in pre- and postoperative assessments of their neurological function. The assessments included evaluating activities of daily living, associated functional ability, and degree of spasticity, motor power, sensation, and pain perception. After the first set of assessments, the authors repaired the injured segment of the spinal cord using a total laminectomy followed by the application of fibrin glue containing acidic FGF. Clinical evaluations were conducted 1, 2, 3, 4, 5, and 6 months after the surgery. Preoperative versus postoperative differences in injury severity and grading of key muscle power and sensory points were calculated using the Wilcoxon signed-rank test.

Results

The preoperative degree of injury severity, as measured using the American Spinal Injury Association (ASIA) scoring system, showed that preoperative motor (52.4 ± 25.9 vs 68.6 ± 21.5), pinprick (61.0 ± 34.9 vs 71.6 ± 31.0), and light touch scores (57.3 ± 33.9 vs 71.9 ± 30.2) were significantly lower than the respective postoperative scores measured 6 months after surgery (p = 0.005, 0.012, and 0.008, respectively).

Conclusions

Based on the significant difference in ASIA motor and sensory scale scores between the preoperative status and the 6-month postoperative follow-up, this novel nerve repair strategy of using acidic FGF may have a role in the repair of human cervical SCI. Modest nerve regeneration occurred in all 9 patients after this procedure without any observed adverse effects. This repair strategy thus deserves further investigation, clinical consideration, and refinement.

Restricted access

Jau-Ching Wu, Wen-Cheng Huang, Yu-Chun Chen, Tsung-Hsi Tu, Yun-An Tsai, Shih-Fong Huang, Hsueh-Chen Huang, and Henrich Cheng

Object

The study aimed to verify the safety and feasibility of applying acidic fibroblast growth factor (aFGF) with fibrin glue in combination with surgical neurolysis for nonacute spinal cord injury.

Methods

This open-label, prospective, uncontrolled human clinical trial recruited 60 patients with spinal cord injuries (30 cervical and 30 thoracolumbar). The mean patient age was 36.5 ± 15.33 (mean ± SD) years, and the male/female ratio was 3:1. The mean time from injury to treatment was 25.7 ± 26.58 months, and the cause of injury included motor vehicle accident (26 patients [43.3%]), fall from a height (17 patients [28.3%]), sports (4 patients [6.7%]), and other (13 patients [21.7%]). Application of aFGF with fibrin glue and duraplasty was performed via laminectomy, and an adjuvant booster of combined aFGF and fibrin glue (2 ml) was given at 3 and 6 months postsurgery via lumbar puncture. Outcome measurements included the American Spinal Injury Association (ASIA) motor scores, sensory scores, impairment scales, and neurological levels. Examination of functional independence measures, visual analog scale, MR imaging, electrophysiological and urodynamic studies, hematology and biochemistry tests, tumor markers, and serum inflammatory cytokines were all conducted. All adverse events were monitored and reported. Exclusions were based on refusal, unrelated adverse events, or failure to participate in the planned rehabilitation.

Results

Forty-nine patients (26 with cervical and 23 with thoracolumbar injuries) completed the 24-month trial. Compared with preoperative conditions, the 24-month postoperative ASIA motor scores improved significantly in the cervical group (from 27.6 ± 15.55 to 37.0 ± 19.93, p < 0.001) and thoracolumbar group (from 56.8 ± 9.21 to 60.7 ± 10.10, p < 0.001). The ASIA sensory scores also demonstrated significant improvement in light touch and pinprick in both groups: from 55.8 ± 24.89 to 59.8 ± 26.47 (p = 0.049) and 56.3 ± 23.36 to 62.3 ± 24.87 (p = 0.003), respectively, in the cervical group and from 75.7 ± 15.65 to 79.2 ± 15.81 (p < 0.001) and 78.2 ± 14.72 to 82.7 ± 16.60 (p < 0.001), respectively, in the thoracolumbar group. At 24-month follow-up, the ASIA impairment scale improved significantly in both groups (30% cervical [p = 0.011] and 30% thoracolumbar [p = 0.003]). There was also significant improvement in neurological level in the cervical (from 5.17 ± 1.60 to 6.27 ± 3.27, p = 0.022) and thoracolumbar (from 18.03 ± 4.19 to 18.67 ± 3.96, p = 0.001) groups. The average sum of motor items in functional independence measure also had significant improvement in both groups (p < 0.05). The walking/wheelchair locomotion subscale showed increased percentages of patients who were ambulatory (from 3.4% to 13.8% and from 17.9% to 35.7% in the cervical and thoracolumbar groups, respectively). There were no related adverse events.

Conclusions

The use of aFGF for spinal cord injury was safe and feasible in the present trial. There were significant improvements in ASIA motor and sensory scale scores, ASIA impairment scales, neurological levels, and functional independence measure at 24 months after treatment. Further large-scale, randomized, and controlled investigations are warranted to evaluate the efficacy and long-term results.

Restricted access

Michael G. Fehlings and Jefferson R. Wilson