Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Michael T. Lawton x
  • Refine by Access: all x
  • By Author: Chang, Edward F. x
Clear All Modify Search
Restricted access

Dario J. Englot, Seunggu J. Han, Michael T. Lawton, and Edward F. Chang

Object

Seizures are the most common presenting symptom of supratentorial cerebral cavernous malformations (CCMs) and progress to medically refractory epilepsy in 40% of patients. Predictors of seizure freedom in the resection of CCMs are incompletely understood.

Methods

The authors systematically reviewed the published literature on seizure freedom following the resection of supratentorial CCMs in patients presenting with seizures. Seizure outcomes were stratified across 12 potential prognostic variables. A total of 1226 patients with supratentorial CCMs causing seizures were identified across 31 predominantly retrospective studies; 361 patients had medically refractory epilepsy.

Results

Seventy-five percent of the patients were seizure free after microsurgical lesion removal, whereas 25% continued to have seizures. All patients had had preoperative seizures and > 6 months of postoperative follow-up. Modifiable predictors of postoperative seizure freedom included gross-total resection (OR 36.6, 95% CI 8.5–157.5) and surgery within 1 year of symptom onset (OR 1.83, 95% CI 1.30–2.58). Additional prognostic indicators of a favorable outcome were a CCM size < 1.5 cm (OR 15.4, 95% CI 5.2–45.4), the absence of multiple CCMs (OR 2.02, 95% CI 1.13–3.60), medically controlled seizures (OR 2.38, 95% CI 1.29–4.39), and the lack of secondarily generalized seizures (OR 3.33, 95% CI 2.09–5.30). Other factors, including extended resection of the hemosiderin ring, were not significantly predictive.

Conclusions

In the surgical treatment of supratentorial CCMs, gross-total resection and early operative intervention may improve seizure outcome. While surgery should not be considered the first-line treatment for CCM-related epilepsy, it is important to understand the variables associated with seizure freedom in CCM resection given the considerable morbidity and diminished quality of life associated with epilepsy.

Restricted access

Edward F. Chang, Rodney A. Gabriel, Matthew B. Potts, Mitchel S. Berger, and Michael T. Lawton

Object

Resection of cavernous malformations (CMs) located in functionally eloquent areas of the supratentorial compartment is controversial. Hemorrhage from untreated lesions can result in devastating neurological injury, but surgery has potentially serious risks. We hypothesized that an organized system of approaches can guide operative planning and lead to acceptable neurological outcomes in surgical patients.

Methods

The authors reviewed the presentation, surgery, and outcomes of 79 consecutive patients who underwent microresection of supratentorial CMs in eloquent and deep brain regions (basal ganglia [in 27 patients], sensorimotor cortex [in 23], language cortex [in 3], thalamus [in 6], visual cortex [in 10], and corpus callosum [in 10]). A total of 13 different microsurgical approaches were organized into 4 groups: superficial, lateral transsylvian, medial interhemispheric, and posterior approaches.

Results

The majority of patients (93.7%) were symptomatic. Hemorrhage with resulting focal neurological deficit was the most common presentation in 53 patients (67%). Complete resection, as determined by postoperative MR imaging, was achieved in 76 patients (96.2%). Overall, the functional neurological status of patients improved after microsurgical dissection at the time of discharge from the hospital and at follow-up. At 6 months, 64 patients (81.0%) were improved relative to their preoperative condition and 14 patients (17.7%) were unchanged. Good outcomes (modified Rankin Scale score ≤ 2, living independently) were achieved in 77 patients (97.4%). Multivariate analysis of demographic and surgical factors revealed that preoperative functional status was the only predictor of postoperative modified Rankin Scale score (OR 4.6, p = 0.001). Six patients (7.6%) had transient worsening of neurological examination after surgery, and 1 patient (1.3%) was permanently worse. There was no surgical mortality.

Conclusions

The authors present a system of 13 microsurgical approaches to 6 location targets with 4 general trajectories to facilitate safe access to supratentorial CMs in eloquent brain regions. Favorable neurological outcomes following microsurgical resection justify an aggressive surgical attitude toward these lesions.

Full access

Ethan A. Winkler, Harjus Birk, Jan-Karl Burkhardt, Xiaolin Chen, John K. Yue, Diana Guo, W. Caleb Rutledge, George F. Lasker, Carlene Partow, Tarik Tihan, Edward F. Chang, Hua Su, Helen Kim, Brian P. Walcott, and Michael T. Lawton

OBJECTIVE

Brain arteriovenous malformations (bAVMs) are rupture-prone tangles of blood vessels with direct shunting of blood flow between arterial and venous circulations. The molecular and/or cellular mechanisms contributing to bAVM pathogenesis and/or destabilization in sporadic lesions have remained elusive. Initial insights into AVM formation have been gained through models of genetic AVM syndromes. And while many studies have focused on endothelial cells, the contributions of other vascular cell types have yet to be systematically studied. Pericytes are multifunctional mural cells that regulate brain angiogenesis, blood-brain barrier integrity, and vascular stability. Here, the authors analyze the abundance of brain pericytes and their association with vascular changes in sporadic human AVMs.

METHODS

Tissues from bAVMs and from temporal lobe specimens from patients with medically intractable epilepsy (nonvascular lesion controls [NVLCs]) were resected. Immunofluorescent staining with confocal microscopy was performed to quantify pericytes (platelet-derived growth factor receptor–beta [PDGFRβ] and aminopeptidase N [CD13]) and extravascular hemoglobin. Iron-positive hemosiderin deposits were quantified with Prussian blue staining. Syngo iFlow post–image processing was used to measure nidal blood flow on preintervention angiograms.

RESULTS

Quantitative immunofluorescent analysis demonstrated a 68% reduction in the vascular pericyte number in bAVMs compared with the number in NVLCs (p < 0.01). Additional analysis demonstrated 52% and 50% reductions in the vascular surface area covered by CD13- and PDGFRβ-positive pericyte cell processes, respectively, in bAVMs (p < 0.01). Reductions in pericyte coverage were statistically significantly greater in bAVMs with prior rupture (p < 0.05). Unruptured bAVMs had increased microhemorrhage, as evidenced by a 15.5-fold increase in extravascular hemoglobin compared with levels in NVLCs (p < 0.01). Within unruptured bAVM specimens, extravascular hemoglobin correlated negatively with pericyte coverage (CD13: r = −0.93, p < 0.01; PDGFRβ: r = −0.87, p < 0.01). A similar negative correlation was observed with pericyte coverage and Prussian blue–positive hemosiderin deposits (CD13: r = −0.90, p < 0.01; PDGFRβ: r = −0.86, p < 0.01). Pericyte coverage positively correlated with the mean transit time of blood flow or the time that circulating blood spends within the bAVM nidus (CD13: r = 0.60, p < 0.05; PDGFRβ: r = 0.63, p < 0.05). A greater reduction in pericyte coverage is therefore associated with a reduced mean transit time or faster rate of blood flow through the bAVM nidus. No correlations were observed with time to peak flow within feeding arteries or draining veins.

CONCLUSIONS

Brain pericyte number and coverage are reduced in sporadic bAVMs and are lowest in cases with prior rupture. In unruptured bAVMs, pericyte reductions correlate with the severity of microhemorrhage. A loss of pericytes also correlates with a faster rate of blood flow through the bAVM nidus. This suggests that pericytes are associated with and may contribute to vascular fragility and hemodynamic changes in bAVMs. Future studies in animal models are needed to better characterize the role of pericytes in AVM pathogenesis.

Restricted access

Simon G. Ammanuel, Caleb S. Edwards, Andrew K. Chan, Praveen V. Mummaneni, Joseph Kidane, Enrique Vargas, Sarah D’Souza, Amy D. Nichols, Sujatha Sankaran, Adib A. Abla, Manish K. Aghi, Edward F. Chang, Shawn L. Hervey-Jumper, Sandeep Kunwar, Paul S. Larson, Michael T. Lawton, Philip A. Starr, Philip V. Theodosopoulos, Mitchel S. Berger, and Michael W. McDermott

OBJECTIVE

Surgical site infection (SSI) is a complication linked to increased costs and length of hospital stay. Prevention of SSI is important to reduce its burden on individual patients and the healthcare system. The authors aimed to assess the efficacy of preoperative chlorhexidine gluconate (CHG) showers on SSI rates following cranial surgery.

METHODS

In November 2013, a preoperative CHG shower protocol was implemented at the authors’ institution. A total of 3126 surgical procedures were analyzed, encompassing a time frame from April 2012 to April 2016. Cohorts before and after implementation of the CHG shower protocol were evaluated for differences in SSI rates.

RESULTS

The overall SSI rate was 0.6%. No significant differences (p = 0.11) were observed between the rate of SSI of the 892 patients in the preimplementation cohort (0.2%) and that of the 2234 patients in the postimplementation cohort (0.8%). Following multivariable analysis, implementation of preoperative CHG showers was not associated with decreased SSI (adjusted OR 2.96, 95% CI 0.67–13.1; p = 0.15).

CONCLUSIONS

This is the largest study, according to sample size, to examine the association between CHG showers and SSI following craniotomy. CHG showers did not significantly alter the risk of SSI after a cranial procedure.