Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: Michael T. Lawton x
  • Refine by Access: all x
  • By Author: Benet, Arnau x
Clear All Modify Search
Full access

Ali Tayebi Meybodi, Michael T. Lawton, Halima Tabani, and Arnau Benet

OBJECTIVE

Surgical access to the lateral recess of the fourth ventricle (LR) is suboptimal with existing transvermian and telovelar approaches because of limited lateral exposure, significant retraction of the cerebellar tonsil, and steep trajectories near brainstem perforator arteries. The goal in this study was to assess surgical exposure of the tonsillobiventral fissure approach to the LR, and to describe the relevant anatomy.

METHODS

Two formaldehyde-fixed cerebella were used to study the anatomical relationships of the LR. Also, the tonsillobiventral fissure approach was simulated in 8 specimens through a lateral suboccipital craniotomy.

RESULTS

The pattern of the cerebellar folia and the cortical branches of the posterior inferior cerebellar artery were key landmarks to identifying the tonsillobiventral fissure. Splitting the tonsillobiventral fissure allowed a direct and safe surgical trajectory to the LR and into the cerebellopontine cistern. The proposed approach reduces cervical flexion and optimizes the surgical angle of attack.

CONCLUSIONS

The tonsillobiventral fissure approach is a feasible and effective option for exposing the LR. This approach has more favorable trajectories and positions for the patient and the surgeon, and it should be added to the armamentarium for lesions in this location.

Full access

Ali Tayebi Meybodi, Arnau Benet, and Michael T. Lawton

The V3 segment of the vertebral artery (VA) has been studied in various clinical scenarios, such as in tumors of the craniovertebral junction and dissecting aneurysms. However, its use as a donor artery in cerebral revascularization procedures has not been extensively studied. In this report, the authors summarize their clinical experience in cerebral revascularization procedures using the V3 segment as a donor. A brief anatomical description of the relevant techniques is also provided.

Full access

Ali Tayebi Meybodi, Michael T. Lawton, Xuequan Feng, and Arnau Benet

OBJECTIVE

Reimplantation of the posterior inferior cerebellar artery (PICA) to the vertebral artery (VA) is a safe and effective bypass option after deliberate PICA sacrifice during the treatment of nonsaccular and dissecting aneurysms at this location. However, the anatomy and limitations of this technique have not been studied. The goal of this study was to define the surgical anatomy and buffer lengths specific to the proximal segment of the PICA related to 2 variations of PICA reimplantation: 1) reimplantation “along-VA” (simulating a dissecting VA aneurysm), and 2) reimplantation “across-VA” (simulating a nonclippable, proximal PICA aneurysm).

METHODS

Ten cadaver heads (20 sides) were prepared for surgical simulation. Twenty far-lateral approaches were performed. The PICA was mobilized and reimplanted onto the VA according to 2 different paradigms: 1) transposition along the axis of the VA (along-VA) to simulate a dissecting VA, and 2) transposition perpendicular to the axis of the VA (across-VA) to simulate a nonclippable, proximal PICA aneurysm. The buffer lengths provided by mobilization of the artery in each paradigm were measured and the anatomy of perforator branching on the proximal PICAs was analyzed.

RESULTS

The PICA was reimplanted in all surgical simulations. The most common perforating artery on the P1 and P2 segments was the short circumflex type. No direct perforator was found on the P1 segment. The mean buffer length with reimplantation along the VA axis was 13.43 ± 4.61 mm, and it was 6.97 ± 4.04 mm with reimplantation across the VA. The PICA was less maneuverable when it was reimplanted across the VA, due to perforator branches of the PICA (P3 segment).

CONCLUSIONS

The buffer lengths measured in this study describe the limitations of PICA reimplantation as a revascularization procedure for nonsaccular aneurysms in this location. PICA reimplantation is a revascularization option for dissecting VA aneurysms incorporating the PICA origin that are < 13 mm in length, and for nonsaccular proximal PICA aneurysms that are < 6 mm in diameter. The final decision to reimplant the PICA depends on careful inspection of perforator anatomy that is not visible preoperatively on angiography, as well as an assessment of technical difficulty intraoperatively.

Restricted access

Arnau Benet, Jordina Rincon-Torroella, Michael T. Lawton, and J. J. González Sánchez

Object

Surgical simulation using postmortem human heads is one of the most valid strategies for neurosurgical research and training. The authors customized an embalming formula that provides an optimal retraction profile and lifelike physical properties while preventing microorganism growth and brain decay for neurosurgical simulations in cadavers. They studied the properties of the customized formula and compared its use with the standard postmortem processing techniques: cryopreservation and formaldehyde-based embalming.

Methods

Eighteen specimens were prepared for neurosurgical simulation: 6 formaldehyde embalmed, 6 cryopreserved, and 6 custom embalmed. The customized formula is a mixture of ethanol 62.4%, glycerol 17%, phenol 10.2%, formaldehyde 2.3%, and water 8.1%. After a standard pterional craniotomy, retraction profiles and brain stiffness were studied using an intracranial pressure transducer and monitor. Preservation time—that is, time that tissue remained in optimal condition—between specimen groups was also compared through periodical reports during a 48-hour simulation.

Results

The mean (± standard deviation) retraction pressures were highest in the formaldehyde group and lowest in the cryopreserved group. The customized formula provided a mean retraction pressure almost 3 times lower than formaldehyde (36 ± 3 vs 103 ± 14 mm Hg, p < 0.01) and very similar to cryopreservation (24 ± 6 mm Hg, p < 0.01). For research purposes, preservation time in the cryopreserved group was limited to 4 hours and was unlimited for the customized and formaldehyde groups for the duration of the experiment.

Conclusions

The customized embalming solution described herein is optimal for allowing retraction and surgical maneuverability while preventing decay. The authors were able to significantly lower the formaldehyde content as compared with that in standard formulas. The custom embalming solution has the benefits from both cryopreservation (for example, biological brain tissue properties) and formaldehyde embalming (for example, preservation time and microorganism growth prevention) and minimizes their drawbacks, that is, rapid decay in the former and stiffness in the latter. The presented embalming formula provides an important advance for neurosurgical simulations in research and teaching.

Full access

Arnau Benet, Shawn L. Hervey-Jumper, Jose Juan González Sánchez, Michael T. Lawton, and Mitchel S. Berger

OBJECT

Transcortical and transsylvian corridors have been previously described as the main surgical approaches to the insula, but there is insufficient evidence to support one approach versus the other. The authors performed a cadaveric comparative study regarding insular exposure, surgical window and freedom, between the transcortical and transsylvian approaches (with and without cutting superficial sylvian bridging veins). Surgical anatomy and skull surface reference points to the different insular regions are also described.

METHODS

Sixteen cadaveric specimens were embalmed with a customized formula to enhance neurosurgical simulation. Two different blocks were defined in the study: first, transsylvian without (TS) and with the superficial sylvian bridging veins cut (TSVC) and transcortical (TC) approaches to the insula were simulated in all (16) specimens. Insular surface exposure, surgical window and surgical freedom were calculated for each procedure and related to the Berger-Sanai insular glioma classification (Zones I–IV) in 10 specimens. Second, the venous drainage pattern and anatomical landmarks considered critical for surgical planning were studied in all specimens.

RESULTS

In the insular Zone I (anterior-superior), the TC approach provided the best insular exposure compared with both TS and TSVC. The surgical window obtained with the TC approach was also larger than that obtained with the TS. The TC approach provided 137% more surgical freedom than the TS approach. Only the TC corridor provided complete insular exposure. In Zone II (posterior-superior), results depended on the degree of opercular resection. Without resection of the precentral gyrus in the operculum, insula exposure, surgical windows and surgical freedom were equivalent. If the opercular cortex was resected, the insula exposure and surgical freedom obtained through the TC approach was greater to that of the other groups. In Zone III (posterior-inferior), the TC approach provided better surgical exposure than the TS, yet similar to the TSVC. The TC approach provided the best insular exposure, surgical window, and surgical freedom if components of Heschl’s gyrus were resected. In Zone IV (anterior-inferior), the TC corridor provided better exposure than both the TS and the TSVC. The surgical window was equivalent. Surgical freedom provided by the TC was greater than the TS approach. This zone was completely exposed only with the TC approach. A dominant anterior venous drainage was found in 87% of the specimens. In this group, 50% of the specimens had good alternative venous drainage. The sylvian fissure corresponded to the superior segment of the squamosal suture in 14 of 16 specimens. The foramen of Monro was 1.9 cm anterior and 4.42 cm superior to the external acoustic meatus. The M2 branch over the central sulcus of the insula became the precentral M4 (rolandic) artery in all specimens.

CONCLUSIONS

Overall, the TC approach to the insula provided better insula exposure and surgical freedom compared with the TS and the TSVC. Cortical and subcortical mapping is critical during the TC approach to the posterior zones (II and III), as the facial motor and somatosensory functions (Zone II) and language areas (Zone III) may be involved. The evidence provided in this study may help the neurosurgeon when approaching insular gliomas to achieve a greater extent of tumor resection via an optimal exposure.

Full access

Ali Tayebi Meybodi, Wendy Huang, Arnau Benet, Olivia Kola, and Michael T. Lawton

OBJECT

Management of complex aneurysms of the middle cerebral artery (MCA) can be challenging. Lesions not amenable to endovascular techniques or direct clipping might require a bypass procedure with aneurysm obliteration. Various bypass techniques are available, but an algorithmic approach to classifying these lesions and determining the optimal bypass strategy has not been developed. The objective of this study was to propose a comprehensive and flexible algorithm based on MCA aneurysm location for selecting the best of multiple bypass options.

METHODS

Aneurysms of the MCA that required bypass as part of treatment were identified from a large prospectively maintained database of vascular neurosurgeries. According to its location relative to the bifurcation, each aneurysm was classified as a prebifurcation, bifurcation, or postbifurcation aneurysm.

RESULTS

Between 1998 and 2015, 30 patients were treated for 30 complex MCA aneurysms in 8 (27%) prebifurcation, 5 (17%) bifurcation, and 17 (56%) postbifurcation locations. Bypasses included 8 superficial temporal artery–MCA bypasses, 4 high-flow extracranial-to-intracranial (EC-IC) bypasses, 13 IC-IC bypasses (6 reanastomoses, 3 reimplantations, 3 interpositional grafts, and 1 in situ bypass), and 5 combination bypasses. The bypass strategy for prebifurcation aneurysms was determined by the involvement of lenticulostriate arteries, whereas the bypass strategy for bifurcation aneurysms was determined by rupture status. The location of the MCA aneurysm in the candelabra (Sylvian, insular, or opercular) determined the bypass strategy for postbifurcation aneurysms. No deaths that resulted from surgery were found, bypass patency was 90%, and the condition of 90% of the patients was improved or unchanged at the most recent follow-up.

CONCLUSIONS

The bypass strategy used for an MCA aneurysm depends on the aneurysm location, lenticulostriate anatomy, and rupture status. A uniform bypass strategy for all MCA aneurysms does not exist, but the algorithm proposed here might guide selection of the optimal EC-IC or IC-IC bypass technique.

Full access

Ali Tayebi Meybodi, Michael T. Lawton, Dylan Griswold, Pooneh Mokhtari, Andre Payman, and Arnau Benet

OBJECTIVE

The anterior temporal artery (ATA) supplies an area of the brain that, if sacrificed, does not cause a noticeable loss of function. Therefore, the ATA may be used as a donor in intracranial-intracranial (IC-IC) bypass procedures. The capacities of the ATA as a donor have not been studied previously. In this study, the authors assessed the feasibility of using the ATA as a donor for revascularization of different segments of the distal middle cerebral artery (MCA).

METHODS

The ATA was studied in 15 cadaveric specimens (8 heads, excluding 1 side). First, the cisternal segment of the artery was untethered from arachnoid adhesions and small branches feeding the anterior temporal lobe and insular cortex, to evaluate its capacity for a side-to-side bypass to insular, opercular, and cortical segments of the MCA. Any branch entering the anterior perforated substance was preserved. Then, the ATA was cut at the opercular-cortical junction and the capacity for an end-to-side bypass was assessed.

RESULTS

From a total of 17 ATAs, 4 (23.5%) arose as an early MCA branch. The anterior insular zone and the frontal parasylvian cortical arteries were the best targets (in terms of mobility and caliber match) for a side-to-side bypass. Most of the insula was accessible for end-to-side bypass, but anterior zones of the insula were more accessible than posterior zones. End-to-side bypass was feasible for most recipient cortical arteries along the opercula, except for posterior temporal and parietal regions. Early ATAs reached significantly farther on the insular MCA recipients than non-early ATAs for both side-to-side and end-to-side bypasses.

CONCLUSIONS

The ATA is a robust arterial donor for IC-IC bypass procedures, including side-to-side and end-to-side techniques. The evidence provided in this work supports the use of the ATA as a donor for distal MCA revascularization in well-selected patients.

Full access

Ali Tayebi Meybodi, Andrew S. Little, Vera Vigo, Arnau Benet, Sofia Kakaizada, and Michael T. Lawton

OBJECTIVE

The transpterygoid extension of the endoscopic endonasal approach provides exposure of the petrous apex, Meckel’s cave, paraclival area, and the infratemporal fossa. Safe and efficient localization of the lacerum segment of the internal carotid artery (ICA) is a crucial part of such exposure. The aim of this study is to introduce a novel landmark for localization of the lacerum ICA.

METHODS

Ten cadaveric heads were prepared for transnasal endoscopic dissection. The floor of the sphenoid sinus was drilled to expose an extension of the pharyngobasilar fascia between the sphenoid floor and the pterygoid process (the pterygoclival ligament). Several features of the pterygoclival ligament were assessed. In addition, 31 dry skulls were studied to assess features of the bony groove harboring the pterygoclival ligament.

RESULTS

The pterygoclival ligament was identified bilaterally during drilling of the sphenoid floor in all specimens. The ligament started a few millimeters posterior to the posterior end of the vomer alae and invariably extended posterolaterally and superiorly to blend into the fibrous tissue around the lacerum ICA. The mean length of the ligament was 10.5 ± 1.7 mm. The mean distance between the anterior end of the ligament and midline was 5.2 ± 1.2 mm. The mean distance between the posterior end of the ligament and midline was 12.3 ± 1.4 mm. The bony pterygoclival groove was identified at the confluence of the vomer, pterygoid process of the sphenoid, and basilar part of the occipital bone, running from posterolateral to anteromedial. The mean length of the groove was 7.7 ± 1.8 mm. Its posterolateral end faced the anteromedial aspect of the foramen lacerum medial to the posterior end of the vidian canal. A clinical case illustration is also provided.

CONCLUSIONS

The pterygoclival ligament is a consistent landmark for localization of the lacerum ICA. It may be used as an adjunct or alternative to the vidian nerve to localize the ICA during endoscopic endonasal surgery.

Free access

Brian P. Walcott, Jae Seung Bang, Omar Choudhri, Sirin Gandhi, Halima Tabani, Arnau Benet, and Michael T. Lawton

A 46-year-old male presented with an incidentally discovered left ventricular body arteriovenous malformation (AVM). It measured 2 cm in diameter and had drainage via an atrial vein into the internal cerebral vein (Spetzler-Martin Grade III, Supplementary Grade 4). Preoperative embolization of the posterior medial choroidal artery reduced nidus size by 50%. Subsequently, he underwent a right-sided craniotomy for a contralateral transcallosal approach to resect the AVM. This case demonstrates strategic circumferential disconnection of feeding arteries (FAs) to the nidus, the use of aneurysm clips to control large FAs, and the use of dynamic retraction and importance of a generous callosotomy. Postoperatively, he was neurologically intact, and angiogram confirmed complete resection.

The video can be found here: https://youtu.be/j0778LfS3MI.

Full access

W. Caleb Rutledge, Omar Choudhri, Brian P. Walcott, Arnau Benet, Christine K. Fox, Nalin Gupta, and Michael T. Lawton

Mutations in the smooth muscle–specific isoform of alpha actin (ACTA2) cause smooth muscle dysfunction in arteries. This rare loss-of-function mutation may cause a diffuse occlusive cerebral arteriopathy, resulting in stroke. While ACTA2 arteriopathy is often described as moyamoya-like, it has a distinct phenotype characterized by dilation of the proximal internal carotid artery (ICA) and occlusion of the terminal ICA and proximal middle cerebral artery. Intracranial arteries have an abnormally straight course, often with small aneurysms. There is limited experience with revascularization procedures for ACTA2 arteriopathy, and the safety and efficacy of these procedures are unknown. In this paper the authors present a symptomatic 6-year-old patient with ACTA2 cerebral arteriopathy who underwent both indirect revascularization and direct cerebrovascular bypass. Postoperatively, the patient suffered an ischemic infarct in a neighboring vascular territory. While direct cerebrovascular bypass is technically feasible, patients with ACTA2 arteriopathy may be at increased risk for perioperative stroke compared with patients with moyamoya disease.