Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Suk-Kyu Lee x
  • Refine by Access: user x
Clear All Modify Search
Free access

Efficacy and safety of oblique posterior endplate resection for wider decompression (trumpet-shaped decompression) during anterior cervical discectomy and fusion

Dong-Ho Lee, Suk-Kyu Lee, Jae Hwan Cho, Chang Ju Hwang, Choon Sung Lee, Jae Jun Yang, Kook Jong Kim, Jae Hong Park, and Sehan Park

OBJECTIVE

Anterior cervical discectomy and fusion (ACDF) provides a limited workspace, and surgeons often need to access the posterior aspect of the vertebral body to achieve sufficient decompression. Oblique resection of the posterior endplate (trumpet-shaped decompression [TSD]) widens the workspace, enabling removal of lesions behind the vertebral body. This study was conducted to evaluate the efficacy and safety of oblique posterior endplate resection for wider decompression.

METHODS

In this retrospective study, 227 patients who underwent ACDF for the treatment of cervical myelopathy or radiculopathy caused by spondylosis or ossification of the posterior longitudinal ligament and were followed up for ≥ 1 year were included. Patient characteristics, fusion rates, subsidence, and patient-reported outcome measures, including the neck pain visual analog scale (VAS) score, arm pain VAS score, and Neck Disability Index (NDI), were assessed. Patients who underwent TSD during ACDF (TSD group) and those who underwent surgery without TSD (non-TSD group) were compared.

RESULTS

Fifty-seven patients (25.1%) were included in the TSD group and 170 patients (74.9%) in the non-TSD group. In the TSD group, 28.2% ± 5.5% of the endplate was resected, and 26.0% ± 6.1% of the region behind the vertebral body could be visualized via the TSD technique. The resection angle was 26.9° ± 5.9°. The fusion rate assessed on the basis of interspinous motion, intragraft bone bridging, and extragraft bone bridging did not significantly differ between the two groups. Furthermore, there were no significant intergroup differences in subsidence. The patient-reported outcome measures at the 1-year follow-up were also not significantly different between the groups.

CONCLUSIONS

TSD widened the workspace during ACDF, and 26% of the region posterior to the vertebral body could be accessed using this technique. The construct stability was not adversely affected by TSD as demonstrated by the similar fusion and subsidence rates among patients who underwent TSD and those who did not. Therefore, TSD can be safely applied during ACDF when compressive lesions extend behind the vertebral body and are not limited to the disc space, enabling adequate decompression without disrupting the construct stability.

Full access

Feasibility of intraoperative monitoring of motor evoked potentials obtained through transcranial electrical stimulation in infants younger than 3 months

You Gyoung Yi, Keewon Kim, Hyung-Ik Shin, Moon Suk Bang, Hee-Soo Kim, Jinwoo Choi, Kyu-Chang Wang, Seung-Ki Kim, Ji Yeoun Lee, Ji Hoon Phi, and Han Gil Seo

OBJECTIVE

This study aimed to investigate the feasibility and safety of intraoperative motor evoked potential (MEP) monitoring in infants less than 3 months of age.

METHODS

The authors investigated 25 cases in which infants younger than 3 months (mean age 72.8 days, range 39–87) underwent neurosurgery between 2014 and 2017. Myogenic MEPs were obtained through transcranial electrical stimulation. In all cases, surgery was performed under total intravenous anesthesia, maintained with remifentanil and propofol.

RESULTS

MEPs were documented in 24 infants, the sole exception being 1 infant who was lethargic and had 4-limb weakness before surgery. The mean stimulation intensity maintained during monitoring was 596 ± 154 V (range 290–900 V). In 19 of 24 infants MEP signals remained at ≥ 50% of the baseline amplitude throughout the operation. Among 5 cases with a decrease in intraoperative MEP amplitude, the MEP signal was recovered in one during surgery, and in the other case a neurological examination could not be performed after surgery. In the other 3 cases, 2 infants had relevant postoperative weakness and the other did not show postoperative neurological deficits. Postoperative weakness was not observed in any of the 20 infants who had no deterioration (n = 19) or only temporary deterioration (n = 1) in MEP signal during surgery.

CONCLUSIONS

Transcranial electrical MEPs could be implemented during neurosurgery in infants between 1 and 3 months of age. Intraoperative MEP monitoring may be a safe adjunct for neurosurgical procedures in these very young patients.