Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Phiroz E. Tarapore x
  • Refine by Access: user x
Clear All Modify Search
Free access

Severin Schramm, Aashna Mehta, Kurtis I. Auguste, and Phiroz E. Tarapore

OBJECTIVE

Navigated transcranial magnetic stimulation (nTMS) is a noninvasive technique often used for localization of the functional motor cortex via induction of motor evoked potentials (MEPs) in neurosurgical patients. There has, however, been no published record of its application in pediatric epilepsy surgery. In this study, the authors aimed to investigate the feasibility of nTMS-based motor mapping in the preoperative diagnostic workup within a population of children with medically refractory epilepsy.

METHODS

A single-institution database was screened for preoperative nTMS motor mappings obtained in pediatric patients (aged 0 to 18 years, 2012 to present) with medically refractory epilepsy. Patient clinical data, demographic information, and mapping results were extracted and used in statistical analyses.

RESULTS

Sixteen patients met the inclusion criteria, 15 of whom underwent resection. The median age was 9 years (range 0–17 years). No adverse effects were recorded during mapping. Specifically, no epileptic seizures were provoked via nTMS. Recordings of valid MEPs induced by nTMS were obtained in 10 patients. In the remaining patients, no MEPs could be elicited. Failure to generate MEPs was associated significantly with younger patient age (r = 0.8020, p = 0.0001863). The most frequent seizure control outcome was Engel Epilepsy Surgery Outcome Scale class I (9 patients).

CONCLUSIONS

Navigated TMS is a feasible, effective, and well-tolerated method for mapping the motor cortex of the upper and lower extremities in pediatric patients with epilepsy. Patient age modulates elicitability of MEPs, potentially reflecting various stages of myelination. Successful motor mapping has the potential to add to the existing presurgical diagnostic workup in this population, and further research is warranted.

Restricted access

Severin Schramm, Aashna Mehta, Kurtis I. Auguste, and Phiroz E. Tarapore

OBJECTIVE

Navigated transcranial magnetic stimulation (nTMS) is a noninvasive technique often used for localization of the functional motor cortex via induction of motor evoked potentials (MEPs) in neurosurgical patients. There has, however, been no published record of its application in pediatric epilepsy surgery. In this study, the authors aimed to investigate the feasibility of nTMS-based motor mapping in the preoperative diagnostic workup within a population of children with medically refractory epilepsy.

METHODS

A single-institution database was screened for preoperative nTMS motor mappings obtained in pediatric patients (aged 0 to 18 years, 2012 to present) with medically refractory epilepsy. Patient clinical data, demographic information, and mapping results were extracted and used in statistical analyses.

RESULTS

Sixteen patients met the inclusion criteria, 15 of whom underwent resection. The median age was 9 years (range 0–17 years). No adverse effects were recorded during mapping. Specifically, no epileptic seizures were provoked via nTMS. Recordings of valid MEPs induced by nTMS were obtained in 10 patients. In the remaining patients, no MEPs could be elicited. Failure to generate MEPs was associated significantly with younger patient age (r = 0.8020, p = 0.0001863). The most frequent seizure control outcome was Engel Epilepsy Surgery Outcome Scale class I (9 patients).

CONCLUSIONS

Navigated TMS is a feasible, effective, and well-tolerated method for mapping the motor cortex of the upper and lower extremities in pediatric patients with epilepsy. Patient age modulates elicitability of MEPs, potentially reflecting various stages of myelination. Successful motor mapping has the potential to add to the existing presurgical diagnostic workup in this population, and further research is warranted.

Full access

Seunggu J. Han, Stephen T. Magill, Phiroz E. Tarapore, Jonathan C. Horton, and Michael W. McDermott

Tuberculum sellae meningiomas frequently produce visual loss by direct compression from tumor, constriction of the optic nerve (ON) under the falciform ligament, and/or ON ischemia. The authors hypothesized that changes in visual function after tumor removal may be related to changes in blood supply to the ON that might be seen in the pial circulation at surgery. Indocyanine green (ICG) angiography was used to attempt to document these changes at surgery. The first patient in whom the technique was used had a left-sided, 1.4-cm, tuberculum meningioma. Time-lapse comparison of images was done postsurgery, and the comparison of video images revealed both faster initial filling and earlier complete filling of the ON pial circulation, suggesting improved pial blood flow after surgical decompression. In follow-up the patient had significant improvements in both visual acuity and visual fields function. Intraoperative ICG angiography of the ON can demonstrate measurable changes in pial vascular flow that may be predictive of postoperative visual outcome. The predictive value of this technique during neurosurgical procedures around the optic apparatus warrants further investigation in a larger cohort.

Free access

Ethan A. Winkler, John K. Yue, Harjus Birk, Caitlin K. Robinson, Geoffrey T. Manley, Sanjay S. Dhall, and Phiroz E. Tarapore

OBJECT

Traumatic fractures of the thoracolumbar spine are common injuries, accounting for approximately 90% of all spinal trauma. Lumbar spine trauma in the elderly is a growing public health problem with relatively little evidence to guide clinical management. The authors sought to characterize the complications, morbidity, and mortality associated with surgical and nonsurgical management in elderly patients with traumatic fractures of the lumbar spine.

METHODS

Using the National Sample Program of the National Trauma Data Bank, the authors performed a retrospective analysis of patients ≥ 55 years of age who had traumatic fracture to the lumbar spine. This group was divided into middle-aged (55–69 years) and elderly (≥ 70 years) cohorts. Cohorts were subdivided into nonoperative, vertebroplasty or kyphoplasty, noninstrumented surgery, and instrumented surgery. Univariate and multivariable analyses were used to characterize and identify predictors of medical and surgical complications, mortality, hospital length of stay, ICU length of stay, number of days on ventilator, and hospital discharge in each subgroup. Adjusted odds ratios, mean differences, and associated 95% CIs were reported. Statistical significance was assessed at p < 0.05, and the Bonferroni correction for multiple comparisons was applied for each outcome analysis.

RESULTS

Between 2003 and 2012, 22,835 people met the inclusion criteria, which represents 94,103 incidents nationally. Analyses revealed a similar medical and surgical complication profile between age groups. The most prevalent medical complications were pneumonia (7.0%), acute respiratory distress syndrome (3.6%), and deep venous thrombosis (3%). Surgical site infections occurred in 6.3% of cases. Instrumented surgery was associated with the highest odds of each complication (p < 0.001). The inpatient mortality rate was 6.8% for all subjects. Multivariable analyses demonstrated that age ≥ 70 years was an independent predictor of mortality (OR 3.16, 95% CI 2.77–3.60), whereas instrumented surgery (multivariable OR 0.38, 95% CI 0.28–0.52) and vertebroplasty or kyphoplasty (OR 0.27, 95% CI 0.17–0.45) were associated with decreased odds of death. In surviving patients, both older age (OR 0.32, 95% CI 0.30–0.34) and instrumented fusion (OR 0.37, 95% CI 0.33–0.41) were associated with decreased odds of discharge to home.

CONCLUSIONS

The present study confirms that lumbar surgery in the elderly is associated with increased morbidity. In particular, instrumented fusion is associated with periprocedural complications, prolonged hospitalization, and a decreased likelihood of being discharged home. However, fusion surgery is also associated with reduced mortality. Age alone should not be an exclusionary factor in identifying surgical candidates for instrumented lumbar spinal fusion. Future studies are needed to confirm these findings.

Restricted access

Visish M. Srinivasan, Phiroz E. Tarapore, Stefan W. Koester, Joshua S. Catapano, Caleb Rutledge, Kunal P. Raygor, and Michael T. Lawton

OBJECTIVE

Rare arteriovenous malformations (AVMs) of the optic apparatus account for < 1% of all AVMs. The authors conducted a systematic review of the literature for cases of optic apparatus AVMs and present 4 cases from their institution. The literature is summarized to describe preoperative characteristics, surgical technique, and treatment outcomes for these lesions.

METHODS

A comprehensive search of the English-language literature was performed in accordance with established Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to identify all published cases of AVM in the optic apparatus in the PubMed, Web of Science, and Cochrane databases. The authors also searched their prospective institutional database of vascular malformations for such cases. Data regarding the clinical and radiological presentation, visual acuity, visual fields, extent of resection, and postoperative outcomes were gathered.

RESULTS

Nine patients in the literature and 4 patients in the authors’ single-surgeon series who fit the inclusion criteria were identified. The median age at presentation was 29 years (range 8–39 years). Among these patients, 11 presented with visual disturbance, 9 with headache, and 1 with multiple prior subarachnoid hemorrhages; the AVM in 1 case was found incidentally. Four patients described prior symptoms of headache or visual disturbance consistent with sentinel events. Visual acuity was decreased from baseline in 10 patients, and 11 patients had visual field defects on formal visual field testing. The most common visual field defect was temporal hemianopia, found in one or both eyes in 7 patients. The optic chiasm was affected in 10 patients, the hypothalamus in 2 patients, the optic nerve (unilaterally) in 8 patients, and the optic tract in 2 patients. Six patients underwent gross-total resection; 6 patients underwent subtotal resection; and 1 patient underwent craniotomy, but no resection was attempted. Postoperatively, 9 of the patients had improved visual function, 1 had no change, and 3 had worse visual acuity. Eight patients demonstrated improved visual fields, 1 had no change, and 4 had narrowed fields.

CONCLUSIONS

AVMs of the optic apparatus are rare lesions. Although they reside in a highly eloquent region, surgical outcomes are generally good; the majority of patients will see improvement in their visual function postoperatively. Microsurgical technique is critical to the successful removal of these lesions, and preservation of function sometimes requires subtotal resection of the lesion.

Full access

Laura B. Ngwenya, Catherine G. Suen, Phiroz E. Tarapore, Geoffrey T. Manley, and Michael C. Huang

OBJECTIVE

Blood loss and moderate anemia are common in patients with traumatic brain injury (TBI). However, despite evidence of the ill effects and expense of the transfusion of packed red blood cells, restrictive transfusion practices have not been universally adopted for patients with TBI. At a Level I trauma center, the authors compared patients with TBI who were managed with a restrictive (target hemoglobin level > 7 g/dl) versus a liberal (target hemoglobin level > 10 g/dl) transfusion protocol. This study evaluated the safety and cost-efficiency of a hospital-wide change to a restrictive transfusion protocol.

METHODS

A retrospective analysis of patients with TBI who were admitted to the intensive care unit (ICU) between January 2011 and September 2015 was performed. Patients < 16 years of age and those who died within 24 hours of admission were excluded. Demographic data and injury characteristics were compared between groups. Multivariable regression analyses were used to assess hospital outcome measures and mortality rates. Estimates from an activity-based cost analysis model were used to detect changes in cost with transfusion protocol.

RESULTS

A total of 1565 patients with TBI admitted to the ICU were included in the study. Multivariable analysis showed that a restrictive transfusion strategy was associated with fewer days of fever (p = 0.01) and that patients who received a transfusion had a larger fever burden. ICU length of stay, ventilator days, incidence of lung injury, thromboembolic events, and mortality rates were not significantly different between transfusion protocol groups. A restrictive transfusion protocol saved approximately $115,000 annually in hospital direct and indirect costs.

CONCLUSIONS

To the authors’ knowledge, this is the largest study to date to compare transfusion protocols in patients with TBI. The results demonstrate that a hospital-wide change to a restrictive transfusion protocol is safe and cost-effective in patients with TBI.

Free access

Ethan A. Winkler, John K. Yue, John F. Burke, Andrew K. Chan, Sanjay S. Dhall, Mitchel S. Berger, Geoffrey T. Manley, and Phiroz E. Tarapore

OBJECTIVE

Sports-related traumatic brain injury (TBI) is an important public health concern estimated to affect 300,000 to 3.8 million people annually in the United States. Although injuries to professional athletes dominate the media, this group represents only a small proportion of the overall population. Here, the authors characterize the demographics of sports-related TBI in adults from a community-based trauma population and identify predictors of prolonged hospitalization and increased morbidity and mortality rates.

METHODS

Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from adults (age ≥ 18 years) across 5 sporting categories—fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged hospital length of stay (LOS), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α < 0.05, and the Bonferroni correction for multiple comparisons was applied for each outcome analysis.

RESULTS

From 2003 to 2012, in total, 4788 adult sports-related TBIs were documented in the NTDB, which represented 18,310 incidents nationally. Equestrian sports were the greatest contributors to sports-related TBI (45.2%). Mild TBI represented nearly 86% of injuries overall. Mean (± SEM) LOSs in the hospital or intensive care unit (ICU) were 4.25 ± 0.09 days and 1.60 ± 0.06 days, respectively. The mortality rate was 3.0% across all patients, but was statistically higher in TBI from roller sports (4.1%) and aquatic sports (7.7%). Age, hypotension on admission to the emergency department (ED), and the severity of head and extracranial injuries were statistically significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Traumatic brain injury during aquatic sports was similarly associated with prolonged ICU and hospital LOSs, medical complications, and failure to be discharged to home.

CONCLUSIONS

Age, hypotension on ED admission, severity of head and extracranial injuries, and sports mechanism of injury are important prognostic variables in adult sports-related TBI. Increasing TBI awareness and helmet use—particularly in equestrian and roller sports—are critical elements for decreasing sports-related TBI events in adults.

Free access

Anthony T. Lee, Claire Faltermeier, Ramin A. Morshed, Jacob S. Young, Sofia Kakaizada, Claudia Valdivia, Anne M. Findlay, Phiroz E. Tarapore, Srikantan S. Nagarajan, Shawn L. Hervey-Jumper, and Mitchel S. Berger

OBJECTIVE

Gliomas are intrinsic brain tumors with the hallmark of diffuse white matter infiltration, resulting in short- and long-range network dysfunction. Preoperative magnetoencephalography (MEG) can assist in maximizing the extent of resection while minimizing morbidity. While MEG has been validated in motor mapping, its role in speech mapping remains less well studied. The authors assessed how the resection of intraoperative electrical stimulation (IES)–negative, high functional connectivity (HFC) network sites, as identified by MEG, impacts language performance.

METHODS

Resting-state, whole-brain MEG recordings were obtained from 26 patients who underwent perioperative language evaluation and glioma resection that was guided by awake language and IES mapping. The functional connectivity of an individual voxel was determined by the imaginary coherence between the index voxel and the rest of the brain, referenced to its contralesional pair. The percentage of resected HFC voxels was correlated with postoperative language outcomes in tasks of increasing complexity: text reading, 4-syllable repetition, picture naming, syntax (SYN), and auditory stimulus naming (AN).

RESULTS

Overall, 70% of patients (14/20) in whom any HFC tissue was resected developed an early postoperative language deficit (mean 2.3 days, range 1–8 days), compared to 33% of patients (2/6) in whom no HFC tissue was resected (p = 0.16). When bifurcated by the amount of HFC tissue that was resected, 100% of patients (3/3) with an HFC resection > 25% displayed deficits in AN, compared to 30% of patients (6/20) with an HFC resection < 25% (p = 0.04). Furthermore, there was a linear correlation between the severity of AN and SYN decline with percentage of HFC sites resected (p = 0.02 and p = 0.04, respectively). By 2.2 months postoperatively (range 1–6 months), the correlation between HFC resection and both AN and SYN decline had resolved (p = 0.94 and p = 1.00, respectively) in all patients (9/9) except two who experienced early postoperative tumor progression or stroke involving inferior frontooccipital fasciculus.

CONCLUSIONS

Imaginary coherence measures of functional connectivity using MEG are able to identify HFC network sites within and around low- and high-grade gliomas. Removal of IES-negative HFC sites results in early transient postoperative decline in AN and SYN, which resolved by 3 months in all patients without stroke or early tumor progression. Measures of functional connectivity may therefore be a useful means of counseling patients about postoperative risk and assist with preoperative surgical planning.

Full access

Arman Jahangiri, Annette M. Molinaro, Phiroz E. Tarapore, Lewis Blevins Jr., Kurtis I. Auguste, Nalin Gupta, Sandeep Kunwar, and Manish K. Aghi

Object

Rathke cleft cysts (RCC) are benign sellar lesions most often found in adults, and more infrequently in children. They are generally asymptomatic but sometimes require surgical treatment through a transsphenoidal corridor. The purpose of this study was to compare adult versus pediatric cases of RCC.

Methods

The authors retrospectively reviewed presenting symptoms, MR imaging findings, laboratory study results, and pathological findings in 147 adult and 14 pediatric patients who underwent surgery for treatment of RCCs at the University of Californial at San Francisco between 1996 and 2008.

Results

In both the adult and pediatric groups, most patients were female (78% of adults, 79% of pediatric patients, p = 0.9). Headache was the most common symptom in both groups (reported by 50% of pediatric patients and 33% of adults, p = 0.2). Preoperative hypopituitarism occurred in 41% of adults and 45% of pediatric patients (p = 0.8). Growth delay, a uniquely pediatric finding, was a presenting sign in 29% of pediatric patients. Visual complaints were a presenting symptom in 16% of adult and 7% of pediatric patients (p = 0.4). There was no difference between median cyst size in adults versus pediatric patients (1.2 cm in both, p = 0.7). Temporary or permanent postoperative diabetes insipidus occurred in 12% of adults and 21% of pediatric patients (p = 0.4). Kaplan-Meier analysis revealed an 8% RCC recurrence rate at 2 years for each group (p = 0.5).

Conclusions

The incidence of RCCs is much lower in the pediatric population; however, symptoms, imaging findings, and outcomes are similar, suggesting that pediatric RCCs arise from growth of remnants of the embryonic Rathke pouch earlier in life than adult RCCs but do not differ in any other way. It is important to consider RCCs in the differential diagnosis when pediatric patients present with visual impairment, unexplained headache, or hypopituitarism including growth delay. Although the average RCC size was similar in our pediatric and adult patient groups, the smaller size of the pituitary gland in pediatric patients suggests an increased relative RCC size.

Free access

John K. Yue, Ethan A. Winkler, John F. Burke, Andrew K. Chan, Sanjay S. Dhall, Mitchel S. Berger, Geoffrey T. Manley, and Phiroz E. Tarapore

OBJECTIVE

Traumatic brain injury (TBI) in children is a significant public health concern estimated to result in over 500,000 emergency department (ED) visits and more than 60,000 hospitalizations in the United States annually. Sports activities are one important mechanism leading to pediatric TBI. In this study, the authors characterize the demographics of sports-related TBI in the pediatric population and identify predictors of prolonged hospitalization and of increased morbidity and mortality rates.

METHODS

Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from children (age 0–17 years) across 5 sports categories: fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged length of stay (LOS) in the hospital or intensive care unit (ICU), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α < 0.05, and the Bonferroni correction (set at significance threshold p = 0.01) for multiple comparisons was applied in each outcome analysis.

RESULTS

From 2003 to 2012, in total 3046 pediatric sports-related TBIs were recorded in the NTDB, and these injuries represented 11,614 incidents nationally after sample weighting. Fall or interpersonal contact events were the greatest contributors to sports-related TBI (47.4%). Mild TBI represented 87.1% of the injuries overall. Mean (± SEM) LOSs in the hospital and ICU were 2.68 ± 0.07 days and 2.73 ± 0.12 days, respectively. The overall mortality rate was 0.8%, and the prevalence of medical complications was 2.1% across all patients. Severities of head and extracranial injuries were significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Hypotension on admission to the ED was a significant predictor of failure to discharge to home (OR 0.05, 95% CI 0.03–0.07, p < 0.001). Traumatic brain injury incurred during roller sports was independently associated with prolonged hospital LOS compared with FIC events (mean increase 0.54 ± 0.15 days, p < 0.001).

CONCLUSIONS

In pediatric sports-related TBI, the severities of head and extracranial traumas are important predictors of patients developing acute medical complications, prolonged hospital and ICU LOSs, in-hospital mortality rates, and failure to discharge to home. Acute hypotension after a TBI event decreases the probability of successful discharge to home. Increasing TBI awareness and use of head-protective gear, particularly in high-velocity sports in older age groups, is necessary to prevent pediatric sports-related TBI or to improve outcomes after a TBI.