Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Jun-ichi Kuratsu x
  • User-accessible content x
Clear All Modify Search
Full access

Takuichiro Hide, Shigetoshi Yano, Naoki Shinojima and Jun-ichi Kuratsu

OBJECT

To avoid disorientation during endoscopic endonasal transsphenoidal surgery (ETSS), the confirmation of anatomical landmarks is essential. Neuronavigation systems can be pointed at exact sites, but their spatial resolution power is too low for the detection of vessels that cannot be seen on MR images. On Doppler ultrasonography the shape of concealed arteries and veins cannot be visualized. To address these problems, the authors evaluated the clinical usefulness of the indocyanine green (ICG) endoscope.

METHODS

The authors included 38 patients with pituitary adenomas (n = 26), tuberculum sellae meningiomas (n = 4), craniopharyngiomas (n = 3), chordomas (n = 2), Rathke's cleft cyst (n = 1), dermoid cyst (n = 1), or fibrous dysplasia (n = 1). After opening the sphenoid sinus and placing the ICG endoscope, the authors injected 12.5 mg of ICG into a peripheral vein as a bolus and observed the internal carotid arteries (ICAs), cavernous sinus, intercavernous sinus, and pituitary.

RESULTS

The ICA was clearly identified by a strong fluorescence signal through the dura mater and the covering thin bone. The intercavernous and cavernous sinuses were visualized a few seconds later. In patients with tuberculum sellae meningiomas, the abnormal tumor arteries in the dura were seen and the vague outline of the attachment was identified. At the final inspection after tumor removal, perforators to the brain, optic nerves, chiasm, and pituitary stalk were visualized. ICG fluorescence signals from the hypophyseal arteries were strong enough to see and spread to the area of perfusion with the passage of time.

CONCLUSIONS

The ICA and the patent cavernous sinus were detected with the ICG endoscope in real time and at high resolution. The ICG endoscope is very useful during ETSS. The authors suggest that the real-time observation of the blood supply to the optic nerves and pituitary helps to predict the preservation of their function.

Full access

Kenji Fujimoto, Masaki Miura, Tadahiro Otsuka and Jun-ichi Kuratsu

OBJECT

Rotterdam CT scoring is a CT classification system for grouping patients with traumatic brain injury (TBI) based on multiple CT characteristics. This retrospective study aimed to determine the relationship between initial or preoperative Rotterdam CT scores and TBI prognosis after decompressive craniectomy (DC).

METHODS

The authors retrospectively reviewed the medical records of all consecutive patients who underwent DC for nonpenetrating TBI in 2 hospitals from January 2006 through December 2013. Univariate and multivariate logistic regression and receiver operating characteristic (ROC) curve analyses were used to determine the relationship between initial or preoperative Rotterdam CT scores and mortality at 30 days or Glasgow Outcome Scale (GOS) scores at least 3 months after the time of injury. Unfavorable outcomes were GOS Scores 1–3 and favorable outcomes were GOS Scores 4 and 5.

RESULTS

A total of 48 cases involving patients who underwent DC for TBI were included in this study. Univariate analyses showed that initial Rotterdam CT scores were significantly associated with mortality and both initial and preoperative Rotterdam CT scores were significantly associated with unfavorable outcomes. Multivariable logistic regression analysis adjusted for established predictors of TBI outcomes showed that initial Rotterdam CT scores were significantly associated with mortality (OR 4.98, 95% CI 1.40–17.78, p = 0.01) and unfavorable outcomes (OR 3.66, 95% CI 1.29–10.39, p = 0.02) and preoperative Rotterdam CT scores were significantly associated with unfavorable outcomes (OR 15.29, 95% CI 2.50–93.53, p = 0.003). ROC curve analyses showed cutoff values for the initial Rotterdam CT score of 5.5 (area under the curve [AUC] 0.74, 95% CI 0.59–0.90, p = 0.009, sensitivity 50.0%, and specificity 88.2%) for mortality and 4.5 (AUC 0.71, 95% CI 0.56–0.86, p = 0.02, sensitivity 62.5%, and specificity 75.0%) for an unfavorable outcome and a cutoff value for the preoperative Rotterdam CT score of 4.5 (AUC 0.81, 95% CI 0.69–0.94, p < 0.001, sensitivity 90.6%, and specificity 56.2%) for an unfavorable outcome.

CONCLUSIONS

Assessment of changes in Rotterdam CT scores over time may serve as a prognostic indicator in TBI and can help determine which patients require DC.

Full access

Masaji Murakami, Jun-ichi Kuratsu, Masato Kochi, Naoko Kunitoku, Akihito Hashiguchi and Yukitaka Ushio

The authors report on two cases of pineal germinomas with granulomatous inflammation (granulomatous germinomas). Macroscopically, both tumors were relatively hard and grayish in color. Histological examination revealed a germinoma with multinucleated giant cells and Schaumann bodies in one case, and a germinoma with the background of acellular fibrillated matrix in the other. On immunohistochemical analysis, the granulomatous germinomas were shown to contain many macrophages, T- and B-lymphocytes, and glial fibrillary acid protein-positive cells infiltrating the specimens, compared to nongranulomatous germinomas. Analysis of Masson's trichrome staining tests showed that large areas of the granulomatous germinomas were occupied by a collagenous component; this was not the case in cases of nongranulomatous germinomas. Analysis of monoclonal anti-human Ki-67 results showed that the granulomatous germinomas had a lower score than nongranulomatous germinomas (p < 0.05, unpaired t-test), indicating that germinomas with granulomatous inflammation may have a better prognosis.

Full access

Tzuu-Yuan Huang, Jun-ichi Kuratsu, Hideo Takeshima, Toru Nishi and Yukitaka Ushio

Adhesion molecules play a role in tumor growth, invasiveness, and the metastatic process. The expression of CD44 adhesion molecules in 11 intracranial germinoma specimens was investigated using anti-CD44 monoclonal antibody and immunohistochemical methods. In six of 11 specimens studied, CD44 antibodies were bound to the membrane of tumor cells; in five of six specimens, CD44 antigen was also present in the cytoplasm of tumor cells. The only three patients who showed CD44-positive expression in tumor cells, lymphocytes, and extracellular matrix (ECM) exhibited either cerebrospinal fluid dissemination or multiple tumors at different locations. In all 11 specimens, no expression of CD44 in normal glial cells or capillary endothelium was detected. According to the authors' findings, the expression of CD44 in intracranial germinomas is similar to that of gonadal seminomas. Analysis of the results further suggests the possibility that the expression of CD44 in intracranial germinoma tumor cells, lymphocytes, and ECM may contribute to tumor cell migration, adhesion to cerebrospinal fluid dissemination, and/or multiple tumor locations.

Full access

Branavan Manoranjan and Sheila K. Singh