Search Results

You are looking at 1 - 10 of 30 items for :

  • Author or Editor: Christopher Michael x
  • Journal of Neurosurgery: Spine x
  • User-accessible content x
Clear All Modify Search
Free access

Christopher I. Shaffrey and Justin S. Smith

Full access

Alex J. Koefman, Melissa Licari, Michael Bynevelt and Christopher R. P. Lind

OBJECTIVE

An objective biomarker for pain is yet to be established. Functional MRI (fMRI) is a promising neuroimaging technique that may reveal an objective radiological biomarker. The purpose of this study was to evaluate fMRI technology in the setting of lumbosacral radiculopathy and discuss its application in revealing a biomarker for pain in the future.

METHODS

A prospective, within-participant control study was conducted. Twenty participants with painful lumbosacral radiculopathy from intervertebral disc pathology were recruited. Functional imaging of the brain was performed during a randomly generated series of nonprovocative and provocative straight leg raise maneuvers.

RESULTS

With a statistical threshold set at p < 0.000001, 3 areas showed significant blood oxygen level–dependent (BOLD) signal change: right superior frontal gyrus (x = 2, y = 13, z = 48, k = 29, Brodmann area 6 [BA6]), left supramarginal cortex (x = −37, y = −44, z = 33, k = 1084, BA40), and left parietal cortex (x = −19, y = −41, z = 63, k = 354, BA5). With a statistical threshold set at p < 0.0002, 2 structures showed significant BOLD signal change: right putamen (x = 29, y = −11, z = 6, k = 72) and bilateral thalami (right: x = 23, y = −11, z = 21, k = 29; x = 8, y = −11, z = 9, k = 274; and left: x = −28, y = −32, z = 6, k = 21).

CONCLUSIONS

The results in this study compare with those in previous studies and suggest that fMRI technology can provide an objective assessment of the pain experience.

Full access

Thomas J. Buell, Davis G. Taylor, Ching-Jen Chen, Christopher I. Shaffrey, Justin S. Smith and Shay Bess

Full access

Gregory D. Schroeder, Nik Hjelm, Alexander R. Vaccaro, Michael S. Weinstein and Christopher K. Kepler

OBJECTIVE

The aim of this paper was to compare the severity of the initial neurological injury as well as the early changes in the American Spinal Injury Association (ASIA) motor score (AMS) between central cord syndrome (CCS) patients with and without an increased T2 signal intensity in their spinal cord.

METHODS

Patients with CCS were identified and stratified based on the presence of increased T2 signal intensity in their spinal cord. The severity of the initial neurological injury and the progression of the neurological injury over the 1st week were measured according to the patient's AMS. The effect of age, sex, congenital stenosis, surgery within 24 hours, and surgery in the initial hospitalization on the change in AMS was determined using an analysis of variance.

RESULTS

Patients with increased signal intensity had a more severe initial neurological injury (AMS 57.6 vs 75.3, respectively, p = 0.01). However, the change in AMS over the 1st week was less severe in patients with an increase in T2 signal intensity (−0.85 vs −4.3, p = 0.07). Analysis of variance did not find that age, sex, Injury Severity Score, congenital stenosis, surgery within 24 hours, or surgery during the initial hospitalization affected the change in AMS.

CONCLUSIONS

The neurological injury is different between patients with and without an increased T2 signal intensity. Patients with an increased T2 signal intensity are likely to have a more severe initial neurological deficit but will have relatively minimal early neurological deterioration. Comparatively, patients without an increase in the T2 signal intensity will likely have a less severe initial injury but can expect to have a slight decline in neurological function in the 1st week.

Free access

Time is spine: a review of translational advances in spinal cord injury

JNSPG 75th Anniversary Invited Review Article

Jetan H. Badhiwala, Christopher S. Ahuja and Michael G. Fehlings

Acute traumatic spinal cord injury (SCI) is a devastating event with far-reaching physical, emotional, and economic consequences for patients, families, and society at large. Timely delivery of specialized care has reduced mortality; however, long-term neurological recovery continues to be limited. In recent years, a number of exciting neuroprotective and regenerative strategies have emerged and have come under active investigation in clinical trials, and several more are coming down the translational pipeline. Among ongoing trials are RISCIS (riluzole), INSPIRE (Neuro-Spinal Scaffold), MASC (minocycline), and SPRING (VX-210). Microstructural MRI techniques have improved our ability to image the injured spinal cord at high resolution. This innovation, combined with serum and cerebrospinal fluid (CSF) analysis, holds the promise of providing a quantitative biomarker readout of spinal cord neural tissue injury, which may improve prognostication and facilitate stratification of patients for enrollment into clinical trials. Given evidence of the effectiveness of early surgical decompression and growing recognition of the concept that “time is spine,” infrastructural changes at a systems level are being implemented in many regions around the world to provide a streamlined process for transfer of patients with acute SCI to a specialized unit. With the continued aging of the population, central cord syndrome is soon expected to become the most common form of acute traumatic SCI; characterization of the pathophysiology, natural history, and optimal treatment of these injuries is hence a key public health priority. Collaborative international efforts have led to the development of clinical practice guidelines for traumatic SCI based on robust evaluation of current evidence. The current article provides an in-depth review of progress in SCI, covering the above areas.

Full access

Daniel J. Blizzard, Michael A. Gallizzi, Robert E. Isaacs and Christopher R. Brown

Lateral interbody fusion (LIF) via the retroperitoneal transpsoas approach is an increasingly popular, minimally invasive technique for interbody fusion in the thoracolumbar spine that avoids many of the complications of traditional anterior and transforaminal approaches. Renal vascular injury has been cited as a potential risk in LIF, but little has been documented in the literature regarding the etiology of this injury. The authors discuss a case of an intraoperative complication of renal artery injury during LIF. A 42-year-old woman underwent staged T12–L5 LIF in the left lateral decubitus position, and L5–S1 anterior lumbar interbody fusion, followed 3 days later by T12–S1 posterior instrumentation for idiopathic scoliosis with radiculopathy refractory to conservative management. After placement of the T12–L1 cage, the retractor was released and significant bleeding was encountered during its removal. Immediate consultation with the vascular team was obtained, and hemostasis was achieved with vascular clips. The patient was stabilized, and the remainder of the procedure was performed without complication. On postoperative CT imaging, the patient was found to have a supernumerary left renal artery with complete occlusion of the superior left renal artery, causing infarction of approximately 75% of the kidney. There was no increase in creatinine level immediately postoperatively or at the 3-month follow-up. Renal visceral and vascular injuries are known risks with LIF, with potentially devastating consequences. The retroperitoneal transpsoas approach for LIF in the superior lumbar spine requires a thorough knowledge of renal visceral and vascular anatomy. Supernumerary renal arteries occur in 25%–40% of the population and occur most frequently on the left and superior to the usual renal artery trunk. These arteries can vary in number, position, and course from the aorta and position relative to the usual renal artery trunk. Understanding of renal anatomy and the potential variability of the renal vasculature is essential to prevent iatrogenic injury.

Full access

Cecilia L. Dalle Ore, Darryl Lau, Jessica L. Davis, Michael M. Safaee and Christopher P. Ames

Juvenile ossifying fibroma (JOF) is a rare benign bone tumor that occurs most frequently in the craniofacial bones of children and young adults. There are few case reports that describe its involvement outside the craniofacial skeleton, especially within the spinal column. While JOF is classified as a benign lesion, it may be locally aggressive and demonstrate a high propensity for recurrence, even after resection. Definitive surgical management may be challenging in naive cases, but it is particularly challenging in recurrent cases and when extensive spinal reconstruction is warranted. In this report, the authors describe the diagnosis and surgical management of a 29-year-old man who presented with a large recurrent sacral trabecular-subtype JOF. A review of literature regarding JOFs, management of recurrent primary spinal tumors, and sacral reconstruction are discussed.

Full access

Michael P. Kelly, Lawrence G. Lenke, Jakub Godzik, Ferran Pellise, Christopher I. Shaffrey, Justin S. Smith, Stephen J. Lewis, Christopher P. Ames, Leah Y. Carreon, Michael G. Fehlings, Frank Schwab and Adam L. Shimer

OBJECTIVE

The authors conducted a study to compare neurological deficit rates associated with complex adult spinal deformity (ASD) surgery when recorded in retrospective and prospective studies. Retrospective studies may underreport neurological deficits due to selection, detection, and recall biases. Prospective studies are expensive and more difficult to perform, but they likely provide more accurate estimates of new neurological deficit rates.

METHODS

New neurological deficits were recorded in a prospective study of complex ASD surgeries (pSR1) with a defined outcomes measure (decrement in American Spinal Injury Association lower-extremity motor score) for neurological deficits. Using identical inclusion criteria and a subset of participating surgeons, a retrospective study was created (rSR1) and neurological deficit rates were collected. Continuous variables were compared with the Student t-test, with correction for multiple comparisons. Neurological deficit rates were compared using the Mantel-Haenszel method for standardized risks. Statistical significance for the primary outcome measure was p < 0.05.

RESULTS

Overall, 272 patients were enrolled in pSR1 and 207 patients were enrolled in rSR1. Inclusion criteria, defining complex spinal deformities, and exclusion criteria were identical. Sagittal Cobb measurements were higher in pSR1, although sagittal alignment was similar. Preoperative neurological deficit rates were similar in the groups. Three-column osteotomies were more common in pSR1, particularly vertebral column resection. New neurological deficits were more common in pSR1 (pSR1 17.3% [95% CI 12.6–22.2] and rSR1 9.0% [95% CI 5.0–13.0]; p = 0.01). The majority of deficits in both studies were at the nerve root level, and the distribution of level of injury was similar.

CONCLUSIONS

New neurological deficit rates were nearly twice as high in the prospective study than the retrospective study with identical inclusion criteria. These findings validate concerns regarding retrospective cohort studies and confirm the need for and value of carefully designed prospective, observational cohort studies in ASD.

Full access

Avital Perry, Christopher S. Graffeo, Waleed Brinjikji, William R. Copeland III, Alejandro A. Rabinstein and Michael J. Link

Spontaneous intracranial hypotension (SIH) is an uncommon headache etiology, typically attributable to an unprovoked occult spinal CSF leak. Although frequently benign, serious complications may occur, including cerebral venous thrombosis (CVT). The objective of this study was to examine a highly complicated case of CVT attributable to SIH as a lens for understanding the heterogeneous literature on this rare complication, and to provide useful, evidence-based, preliminary clinical recommendations. A 43-year-old man presented with 1 week of headache, dizziness, and nausea, which precipitously evolved to hemiplegia. CT venography confirmed CVT, and therapeutic heparin was initiated. He suffered a generalized seizure due to left parietal hemorrhage, which subsequently expanded. He developed signs of mass effect and herniation, heparin was discontinued, and he was taken to the operating room for clot evacuation and external ventricular drain placement. Intraoperatively, the dura was deflated, suggesting underlying SIH. Ventral T-1 CSF leak was identified, which failed multiple epidural blood patches and required primary repair. The patient ultimately made a complete recovery. Systematic review identified 29 publications describing 36 cases of SIH-associated CVT. Among 31 patients for whom long-term neurological outcome was reported, 25 (81%) recovered completely. Underlying coagulopathy/risk factors were identified in 11 patients (31%). CVT is a rare and potentially lethal sequela occurring in 2% of SIH cases. Awareness of the condition is poor, risking morbid complications. Evaluation and treatment should be directed toward identification and treatment of occult CSF leaks. Encouragingly, good neurological outcomes can be achieved through vigilant multidisciplinary neurosurgical and neurocritical care.

Full access

Michael M. Safaee, Vedat Deviren, Cecilia Dalle Ore, Justin K. Scheer, Darryl Lau, Joseph A. Osorio, Fred Nicholls and Christopher P. Ames

OBJECTIVE

Proximal junctional kyphosis (PJK) is a well-recognized, yet incompletely defined, complication of adult spinal deformity surgery. There is no standardized definition for PJK, but most studies describe PJK as an increase in the proximal junctional angle (PJA) of greater than 10°–20°. Ligament augmentation is a novel strategy for PJK reduction that provides strength to the upper instrumented vertebra (UIV) and adjacent segments while also reducing junctional stress at those levels.

METHODS

In this study, ligament augmentation was used in a consecutive series of adult spinal deformity patients at a single institution. Patient demographics, including age; sex; indication for surgery; revision surgery; surgical approach; and use of 3-column osteotomies, vertebroplasty, or hook fixation at the UIV, were collected. The PJA was measured preoperatively and at last follow-up using 36-inch radiographs. Data on change in PJA and need for revision surgery were collected. Univariate and multivariate analyses were performed to identify factors associated with change in PJA and proximal junctional failure (PJF), defined as PJK requiring surgical correction.

RESULTS

A total of 200 consecutive patients were included: 100 patients before implementation of ligament augmentation and 100 patients after implementation of this technique. The mean age of the ligament augmentation cohort was 66 years, and 67% of patients were women. Over half of these cases (51%) were revision surgeries, with 38% involving a combined anterior or lateral and posterior approach. The mean change in PJA was 6° in the ligament augmentation group compared with 14° in the control group (p < 0.001). Eighty-four patients had a change in PJA of less than 10°. In a multivariate linear regression model, age (p = 0.016), use of hook fixation at the UIV (p = 0.045), and use of ligament augmentation (p < 0.001) were associated with a change in PJA. In a separate model, only ligament augmentation (OR 0.193, p = 0.012) showed a significant association with PJF.

CONCLUSIONS

Ligament augmentation represents a novel technique for the prevention of PJK and PJF. Compared with a well-matched historical cohort, ligament augmentation is associated with a significant decrease in PJK and PJF. These data support the implementation of ligament augmentation in surgery for adult spinal deformity, particularly in patients with a high risk of developing PJK and PJF.