Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Raymond Sawaya x
  • User-accessible content x
  • By Author: Suki, Dima x
Clear All Modify Search
Full access

Yan Michael Li, Dima Suki, Kenneth Hess and Raymond Sawaya

OBJECT

Glioblastoma multiforme (GBM) is the most common and deadliest primary brain tumor. The value of extent of resection (EOR) in improving survival in patients with GBM has been repeatedly confirmed, with more extensive resections providing added advantages. The authors reviewed the survival of patients with significant EORs and assessed the relative benefit/risk of resecting 100% of the MRI region showing contrast-enhancement with or without additional resection of the surrounding FLAIR abnormality region, and they assessed the relative benefit/risk of performing this additional resection.

METHODS

The study cohort included 1229 patients with histologically verified GBM in whom ≥ 78% resection was achieved at The University of Texas MD Anderson Cancer Center between June 1993 and December 2012. Patients with > 1 tumor and those 80 years old or older were excluded. The survival of patients having 100% removal of the contrast-enhancing tumor, with or without additional resection of the surrounding FLAIR abnormality region, was compared with that of patients undergoing 78% to < 100% EOR of the enhancing mass. Within the first subgroup, the survival durations of patients with and without resection of the surrounding FLAIR abnormality were subsequently compared. The data on patients and their tumor characteristics were collected prospectively. The incidence of 30-day postoperative complications (overall and neurological) was noted.

RESULTS

Complete resection of the T1 contrast-enhancing tumor volume was achieved in 876 patients (71%). The median survival time for these patients (15.2 months) was significantly longer than that for patients undergoing less than complete resection (9.8 months; p < 0.001). This survival advantage was achieved without an increase in the risk of overall or neurological postoperative deficits and after correcting for established prognostic factors including age, Karnofsky Performance Scale score, preoperative contrast-enhancing tumor volume, presence of cyst, and prior treatment status (HR 1.53, 95% CI 1.33–1.77, p < 0.001). The effect remained essentially unchanged when data from previously treated and previously untreated groups of patients were analyzed separately. Additional analyses showed that the resection of ≥ 53.21% of the surrounding FLAIR abnormality beyond the 100% contrast-enhancing resection was associated with a significant prolongation of survival compared with that following less extensive resections (median survival times 20.7 and 15.5 months, respectively; p < 0.001). In the multivariate analysis, the previously treated group with < 53.21% resection had significantly shorter survival than the 3 other groups (that is, previously treated patients who underwent FLAIR resection ≥ 53.21%, previously untreated patients who underwent FLAIR resection < 53.21%, and previously untreated patients who underwent FLAIR resection ≥ 53.21%); the previously untreated group with ≥ 53.21% resection had the longest survival.

CONCLUSIONS

What is believed to be the largest single-center series of GBM patients with extensive tumor resections, this study supports the established association between EOR and survival and presents additional data that pushing the boundary of a conventional 100% resection by the additional removal of a significant portion of the FLAIR abnormality region, when safely feasible, may result in the prolongation of survival without significant increases in overall or neurological postoperative morbidity. Additional supportive evidence is warranted.

Full access

Dima Suki, Rami Khoury Abdulla, Minming Ding, Soumen Khatua and Raymond Sawaya

Object

Metastasis to the brain is frequent in adult cancer patients but rare among children. Advances in primary tumor treatment and the associated prolonged survival are said to have increased the frequency of brain metastasis in children. The authors present a series of cases of brain metastases in children diagnosed with a solid primary cancer, evaluate brain metastasis trends, and describe tumor type, patterns of occurrence, and prognosis.

Methods

Patients with brain metastases whose primary cancer was diagnosed during childhood were identified in the 1990–2012 Tumor Registry at The University of Texas M.D. Anderson Cancer Center. A review of their hospital records provided demographic data, history, and clinical data, including primary cancer sites, number and location of brain metastases, sites of extracranial metastases, treatments, and outcomes.

Results

Fifty-four pediatric patients (1.4%) had a brain metastasis from a solid primary tumor. Sarcomas were the most common (54%), followed by melanoma (15%). The patients' median ages at diagnosis of the primary cancer and the brain metastasis were 11.37 years and 15.03 years, respectively. The primary cancer was localized at diagnosis in 48% of patients and disseminated regionally in only 14%. The primary tumor and brain metastasis presented synchronously in 15% of patients, and other extracranial metastases were present when the primary cancer was diagnosed. The remaining patients were diagnosed with brain metastasis after initiation of primary cancer treatment, with a median presentation interval of 17 months after primary cancer diagnosis (range 2–77 months). At the time of diagnosis, the brain metastasis was the first site of systemic metastasis in only 4 (8%) of the 51 patients for whom data were available. Up to 70% of patients had lung metastases when brain metastases were found. Symptoms led to the brain metastasis diagnosis in 65% of cases. Brain metastases were single in 60% of cases and multiple in 35%; 6% had only leptomeningeal disease. The median Kaplan-Meier estimates of survival after diagnoses of primary cancer and brain metastasis were 29 months (95% CI 24–34 months) and 9 months (95% CI 6–11 months), respectively. Untreated patients survived for a median of 0.9 months after brain metastasis diagnosis (95% CI 0.3–1.5 months). Those receiving treatment survived for a median of 8 months after initiation of therapy (95% CI 6–11 months).

Conclusions

The results of this study challenge the current notion of an increased incidence of brain metastases among children with a solid primary cancer. The earlier diagnosis of the primary cancer, prior to its dissemination to distant sites (especially the brain), and initiation of presumably more effective treatments may support such an observation. However, although the actual number of cases may not be increasing, the prognosis after the diagnosis of a brain metastasis remains poor regardless of the management strategy.

Full access

Akash J. Patel, Dima Suki, Mustafa Aziz Hatiboglu, Vikas Y. Rao, Benjamin D. Fox and Raymond Sawaya

OBJECT

Brain metastases are the most common intracranial neoplasms and are on the increase. As radiation side effects are increasingly better understood, more patients are being treated with surgery alone with varying outcomes. The authors previously reported that en bloc resection of a single brain metastasis was associated with decreased incidences of leptomeningeal disease and local recurrence compared with piecemeal resection. However, en bloc resection is often feared to cause an increased incidence of postoperative complications. This study aimed to answer this question.

METHODS

The authors reviewed data from patients with a previously untreated single brain metastasis, who were treated with resection at The University of Texas M.D. Anderson Cancer Center (1993–2012). Data related to the patient, tumor, and methods of resection were obtained. Discharge Karnofsky Performance Scale (KPS) scores and 30-day postoperative complications were noted. Complications were considered major when they persisted for longer than 30 days, resulted in hospitalization or prolongation of hospital stay, required aggressive treatment, and/or were life threatening.

RESULTS

During the study period, 1033 eligible patients were identified. The median age was 58 years, 83% had a KPS score greater than 70, and 81% were symptomatic at surgery. Sixty-two percent of the patients underwent en bloc resection of their tumor, and 38% underwent piecemeal resection. There were significant differences between the 2 groups in terms of preoperative tumor volume, tumor functional grade, and symptoms at presentation, among others. The overall complication rates were 13% for patients undergoing en bloc resection and 19% for patients undergoing piecemeal resection (p = 0.007). The incidences of major complications and neurological complications were also significantly different. There was a trend in the same direction for major neurological complications, although it was not significant. Among patients undergoing piecemeal resection of tumors in eloquent cortex, 24% had complications (13% had major, 18% had neurological, 9% had major neurological, and 13% had select neurological complications; 4% died within 1 month of surgery). Among those undergoing en bloc resection of such tumors, 11% had complications (6% had major, 8% had neurological, 4% had major neurological, and 4% had select neurological; 2% died within 1 month of surgery). The differences in overall, major, neurological, and select neurological complications were statistically significant, but 1-month mortality and major neurological complications were not. In addition, within subcategories of tumor volume, the incidence of various complications was generally higher for patients undergoing piecemeal resection than for those undergoing en bloc resection.

CONCLUSIONS

The authors' results indicate that postoperative complication rates are not increased by en bloc resection, including for lesions in eloquent brain regions or for large tumors. This gives credence to the idea that en bloc resection of brain metastases, when feasible, is at least as safe as piecemeal resection.

Full access

Sherise D. Ferguson, Nicholas B. Levine, Dima Suki, Andrew J. Tsung, Fredrick F. Lang, Raymond Sawaya, Jeffrey S. Weinberg and Ian E. McCutcheon

OBJECTIVE

Fourth ventricle tumors are rare, and surgical series are typically small, comprising a single pathology, or focused exclusively on pediatric populations. This study investigated surgical outcome and complications following fourth ventricle tumor resection in a diverse patient population. This is the largest cohort of fourth ventricle tumors described in the literature to date.

METHODS

This is an 18-year (1993–2010) retrospective review of 55 cases involving patients undergoing surgery for tumors of the fourth ventricle. Data included patient demographic characteristics, pathological and radiographic tumor characteristics, and surgical factors (approach, surgical adjuncts, extent of resection, etc.). The neurological and medical complications following resection were collected and outcomes at 30 days, 90 days, 6 months, and 1 year were reviewed to determine patient recovery. Patient, tumor, and surgical factors were analyzed to determine factors associated with the frequently encountered postoperative neurological complications.

RESULTS

There were no postoperative deaths. Gross-total resection was achieved in 75% of cases. Forty-five percent of patients experienced at least 1 major neurological complication, while 31% had minor complications only. New or worsening gait/focal motor disturbance (56%), speech/swallowing deficits (38%), and cranial nerve deficits (31%) were the most common neurological deficits in the immediate postoperative period. Of these, cranial nerve deficits were the least likely to resolve at follow-up. Multivariate analysis showed that patients undergoing a transvermian approach had a higher incidence of postoperative cranial nerve deficits, gait disturbance, and speech/swallowing deficits than those treated with a telovelar approach. The use of surgical adjuncts (intraoperative navigation, neurophysiological monitoring) did not significantly affect neurological outcome. Twenty-two percent of patients required postoperative CSF diversion following tumor resection. Patients who required intraoperative ventriculostomy, those undergoing a transvermian approach, and pediatric patients (< 18 years old) were all more likely to require postoperative CSF diversion. Twenty percent of patients suffered at least 1 medical complication following tumor resection. Most complications were respiratory, with the most common being postoperative respiratory failure (14%), followed by pneumonia (13%).

CONCLUSIONS

The occurrence of complications after fourth ventricle tumor surgery is not rare. Postoperative neurological sequelae were frequent, but a substantial number of patients had neurological improvement at long-term followup. Of the neurological complications analyzed, postoperative cranial nerve deficits were the least likely to completely resolve at follow-up. Of all the patient, tumor, and surgical variables included in the analysis, surgical approach had the most significant impact on neurological morbidity, with the telovelar approach being associated with less morbidity.

Full access

Marcos V. C. Maldaun, Shumaila N. Khawja, Nicholas B. Levine, Ganesh Rao, Frederick F. Lang, Jeffrey S. Weinberg, Sudhakar Tummala, Charles E. Cowles, David Ferson, Anh-Thuy Nguyen, Raymond Sawaya, Dima Suki and Sujit S. Prabhu

Object

The object of this study was to describe the experience of combining awake craniotomy techniques with high-field (1.5 T) intraoperative MRI (iMRI) for tumors adjacent to eloquent cortex.

Methods

From a prospective database the authors obtained and evaluated the records of all patients who had undergone awake craniotomy procedures with cortical and subcortical mapping in the iMRI suite. The integration of these two modalities was assessed with respect to safety, operative times, workflow, extent of resection (EOR), and neurological outcome.

Results

Between February 2010 and December 2011, 42 awake craniotomy procedures using iMRI were performed in 41 patients for the removal of intraaxial tumors. There were 31 left-sided and 11 right-sided tumors. In half of the cases (21 [50%] of 42), the patient was kept awake for both motor and speech mapping. The mean duration of surgery overall was 7.3 hours (range 4.0–13.9 hours). The median EOR overall was 90%, and gross-total resection (EOR ≥ 95%) was achieved in 17 cases (40.5%). After viewing the first MR images after initial resection, further resection was performed in 17 cases (40.5%); the mean EOR in these cases increased from 56% to 67% after further resection. No deficits were observed preoperatively in 33 cases (78.5%), and worsening neurological deficits were noted immediately after surgery in 11 cases (26.2%). At 1 month after surgery, however, worsened neurological function was observed in only 1 case (2.3%).

Conclusions

There was a learning curve with regard to patient positioning and setup times, although it did not adversely affect patient outcomes. Awake craniotomy can be safely performed in a high-field (1.5 T) iMRI suite to maximize tumor resection in eloquent brain areas with an acceptable morbidity profile at 1 month.