Search Results

You are looking at 1 - 10 of 24 items for

  • Author or Editor: Christopher Michael x
  • User-accessible content x
  • By Author: Ames, Christopher P. x
Clear All Modify Search
Free access

Michael M. Safaee, Cecilia L. Dalle Ore, Corinna C. Zygourakis, Vedat Deviren and Christopher P. Ames

OBJECTIVE

Proximal junctional kyphosis (PJK) is a well-recognized complication of surgery for adult spinal deformity and is characterized by increased kyphosis at the upper instrumented vertebra (UIV). PJK prevention strategies have the potential to decrease morbidity and cost by reducing rates of proximal junctional failure (PJF), which the authors define as radiographic PJK plus clinical sequelae requiring revision surgery.

METHODS

The authors performed an analysis of 195 consecutive patients with adult spinal deformity. Age, sex, levels fused, upper instrumented vertebra (UIV), use of 3-column osteotomy, pelvic fixation, and mean time to follow-up were collected. The authors also reviewed operative reports to assess for the use of surgical adjuncts targeted toward PJK prevention, including ligament augmentation, hook fixation, and vertebroplasty. The cost of surgery, including direct and total costs, was also assessed at index surgery and revision surgery. Only revision surgery for PJF was included.

RESULTS

The mean age of the cohort was 64 years (range 25–84 years); 135 (69%) patients were female. The mean number of levels fused was 10 (range 2–18) with the UIV as follows: 2 cervical (1%), 73 upper thoracic (37%), 108 lower thoracic (55%), and 12 lumbar (6%). Ligament augmentation was used in 99 cases (51%), hook fixation in 60 cases (31%), and vertebroplasty in 71 cases (36%). PJF occurred in 18 cases (9%). Univariate analysis found that ligament augmentation and hook fixation were associated with decreased rates of PJF. However, in a multivariate model that also incorporated age, sex, and UIV, only ligament augmentation maintained a significant association with PJF reduction (OR 0.196, 95% CI 0.050–0.774; p = 0.020). Patients with ligament augmentation, compared with those without, had a higher cost of index surgery, but ligament augmentation was overall cost effective and produced significant cost savings. In sensitivity analyses in which we independently varied the reduction in PJF, cost of ligament augmentation, and cost of reoperation by ± 50%, ligament augmentation remained a cost-effective strategy for PJF prevention.

CONCLUSIONS

Prevention strategies for PJK/PJF are limited, and their cost-effectiveness has yet to be established. The authors present the results of 195 patients with adult spinal deformity and show that ligament augmentation is associated with significant reductions in PJF in both univariate and multivariate analyses, and that this intervention is cost-effective. Future studies will need to determine if these clinical results are reproducible, but for high-risk cases, these data suggest an important role of ligament augmentation for PJF prevention and cost savings.

Free access

Michael Safaee, Andrew T. Parsa, Nicholas M. Barbaro, Dean Chou, Praveen V. Mummaneni, Philip R. Weinstein, Tarik Tihan and Christopher P. Ames

OBJECT

Intradural extramedullary spine tumors represent two-thirds of all primary spine neoplasms. Approximately half of these are peripheral nerve sheath tumors, mainly neurofibromas and schwannomas. Given the rarity of this disease and, thus, the limited analyses of clinical outcomes, the authors examined the association of tumor location, extent of resection, and neurofibromatosis (NF) status with clinical outcomes.

METHODS

Patients were identified through a search of the University of California, San Francisco, neuropathology database and a separate review of current procedural terminology codes. Data recorded included patient age, patient sex, clinical presentation, presence of NF, tumor type, tumor location, extent of resection (gross-total resection [GTR] or subtotal resection [STR]), and clinical follow-up.

RESULTS

Of 221 tumors in 199 patients (mean age 45 years), 53 were neurofibromas, 163 were schwannomas, and 5 were malignant peripheral nerve sheath tumors. The most common presenting symptom was spinal pain (76%), followed by weakness (36%) and sensory abnormalities (34%). Mean symptom duration was 16 months. In terms of spinal location, neurofibromas were more common in the cervical spine (74% vs 27%, p < 0.001), and schwannomas were more common in the thoracic and lumbosacral spine (73% vs 26%, p < 0.001). Rates of GTR were lower for neurofibromas than schwannomas (51% vs 83%, p < 0.001), regardless of location. Rates of GTR were lower for cervical (54%) than thoracic (90%) and lumbosacral (86%) lesions (p < 0.001). NF was associated with lower rates of GTR among all tumors (43% vs 86%, p < 0.001). The mean follow-up time was 32 months. Recurrence/progression was more common for neurofibromas than schwannomas (17% vs 7%, p = 0.03), although the mean time to recurrence/progression did not differ according to tumor type (45 vs 53 months, p = 0.63). As expected, GTR was associated with lower recurrence rates (4% vs 22%, p < 0.001). According to multivariate analysis, cervical location (OR 0.239, 95% CI 0.110–0.520) and presence of NF (OR 0.166, 95% CI 0.054–0.507) were associated with lower rates of GTR. In a separate model, only GTR (OR 0.141, 95% CI 0.046–0.429) was associated with tumor recurrence.

CONCLUSIONS

Resection is an effective treatment for spinal nerve sheath tumors. Neurofibromas were found more commonly in the cervical spine than in other regions of the spine and were associated with higher rates of recurrence and lower rates of GTR than other tumor types, particularly in patients with NF Types 1 or 2. According to multivariate analysis, both cervical location and presence of NF were associated with lower rates of GTR. According to a second multivariate model, the only variable associated with tumor recurrence was extent of resection. Maximal safe resection remains ideal for these lesions; however, patients with cervical tumors or NF should be counseled about their increased risk for recurrence.

Free access

Michael P. Kelly, Lawrence G. Lenke, Christopher I. Shaffrey, Christopher P. Ames, Leah Y. Carreon, Virginie Lafage, Justin S. Smith and Adam L. Shimer

Object

The goal in this study was to evaluate the risk factors for complications, including new neurological deficits, in the largest cohort of patients with adult spinal deformity to date.

Methods

The Scoli-RISK-1 inclusion criteria were used to identify eligible patients from 5 centers who were treated between June 1, 2009, and June 1, 2011. Records were reviewed for patient demographic information, surgical data, and reports of perioperative complications. Neurological deficits were recorded as preexisting or as new deficits. Patients who underwent 3-column osteotomies (3COs) were compared with those who did not (posterior spinal fusion [PSF]). Between-group comparisons were performed using independent samples t-tests and chi-square analyses.

Results

Two hundred seven patients were identified—75 who underwent PSF and 132 treated with 3CO. In the latter group, patients were older (58.9 vs 49.4 years, p < 0.001), had a higher body mass index (29.0 vs 25.8, p = 0.029), smaller preoperative coronal Cobb measurements (33.8° vs 56.4°, p < 0.001), more preoperative sagittal malalignment (11.7 cm vs 5.4 cm, p < 0.001), and similar sagittal Cobb measurements (45.8° vs 57.7°, p = 0.113). Operating times were similar (393 vs 423 minutes, p = 0.130), although patients in the 3CO group sustained higher estimated blood loss (2120 vs 1700 ml, p = 0.066). Rates of new neurological deficits were similar (PSF: 6.7% vs 3CO: 9.9%, p = 0.389), and rates of any perioperative medical complication were similar (PSF: 46.7% vs 3CO: 50.8%, p = 0.571). Patients who underwent vertebral column resection (VCR) were more likely to sustain medical complications than those treated with pedicle subtraction osteotomy (73.7% vs 46.9%, p = 0.031), although new neurological deficits were similar (15.8% vs 8.8%, p = 0.348). Regression analysis did not reveal significant predictors of neurological injury or complication from collected data.

Conclusions

Despite higher estimated blood loss, rates of all complications (49.3%) and new neurological deficits (8.7%) did not vary for patients who underwent complex reconstruction, whether or not a 3CO was performed. Patients who underwent VCR sustained more medical complications without an increase in new neurological deficits. Prospective studies of patient factors, provider factors, and refined surgical data are needed to define and optimize risk factors for complication and neurological deficits.

Free access

Michael Safaee, Michael C. Oh, Praveen V. Mummaneni, Philip R. Weinstein, Christopher P. Ames, Dean Chou, Mitchel S. Berger, Andrew T. Parsa and Nalin Gupta

Object

Ependymomas are a common type of CNS tumor in children, although only 13% originate from the spinal cord. Aside from location and extent of resection, the factors that affect outcome are not well understood.

Methods

The authors performed a search of an institutional neuropathology database to identify all patients with spinal cord ependymomas treated over the past 20 years. Data on patient age, sex, clinical presentation, symptom duration, tumor location, extent of resection, use of radiation therapy, surgical complications, presence of tumor recurrence, duration of follow-up, and residual symptoms were collected. Pediatric patients were defined as those 21 years of age or younger at diagnosis. The extent of resection was defined by the findings of the postoperative MR images.

Results

A total of 24 pediatric patients with spinal cord ependymomas were identified with the following pathological subtypes: 14 classic (Grade II), 8 myxopapillary (Grade I), and 2 anaplastic (Grade III) ependymomas. Both anaplastic ependymomas originated in the intracranial compartment and spread to the spinal cord at recurrence. The mean follow-up duration for patients with classic and myxopapillary ependymomas was 63 and 45 months, respectively. Seven patients with classic ependymomas underwent gross-total resection (GTR), while 4 received subtotal resection (STR), 2 received STR as well as radiation therapy, and 1 received radiation therapy alone. All but 1 patient with myxopapillary ependymomas underwent GTR. Three recurrences were identified in the Grade II group at 45, 48, and 228 months. A single recurrence was identified in the Grade I group at 71 months. The mean progression-free survival (PFS) was 58 months in the Grade II group and 45 months in the Grade I group.

Conclusions

Extent of resection is an important prognostic factor in all pediatric spinal cord ependymomas, particularly Grade II ependymomas. These data suggest that achieving GTR is more difficult in the upper spinal cord, making tumor location another important factor. Although classified as Grade I lesions, myxopapillary ependymomas had similar outcomes when compared with classic (Grade II) ependymomas, particularly with respect to PFS. Long-term complications or new neurological deficits were rare. Among patients with long-term follow-up, those who underwent GTR had a recurrence rate of 20% compared with 40% among those with STR or biopsy only, suggesting that extent of resection is perhaps a more important prognostic factor than histological grade in predicting PFS, which has been suggested by other data in the literature. Given the relative paucity of these lesions, collaborative multiinstitutional studies are needed, and such efforts should also focus on molecular and genetic analysis to refine the current classification system.

Full access

Aaron J. Clark, Roxanna M. Garcia, Malla K. Keefe, Tyler R. Koski, Michael K. Rosner, Justin S. Smith, Joseph S. Cheng, Christopher I. Shaffrey, Paul C. McCormick and Christopher P. Ames

Object

Adult spinal deformity (ASD) surgery is increasing in the spinal neurosurgeon's practice.

Methods

A survey of neurosurgeon AANS membership assessed the deformity knowledge base and impact of current training, education, and practice experience to identify opportunities for improved education. Eleven questions developed and agreed upon by experienced spinal deformity surgeons tested ASD knowledge and were subgrouped into 5 categories: 1) radiology/spinopelvic alignment, 2) health-related quality of life, 3) surgical indications, 4) operative technique, and 5) clinical evaluation. Chi-square analysis was used to compare differences based on participant demographic characteristics (years of practice, spinal surgery fellowship training, percentage of practice comprising spinal surgery).

Results

Responses were received from 1456 neurosurgeons. Of these respondents, 57% had practiced less than 10 years, 20% had completed a spine fellowship, and 32% devoted more than 75% of their practice to spine. The overall correct answer percentage was 42%. Radiology/spinal pelvic alignment questions had the lowest percentage of correct answers (38%), while clinical evaluation and surgical indications questions had the highest percentage (44%). More than 10 years in practice, completion of a spine fellowship, and more than 75% spine practice were associated with greater overall percentage correct (p < 0.001). More than 10 years in practice was significantly associated with increased percentage of correct answers in 4 of 5 categories. Spine fellowship and more than 75% spine practice were significantly associated with increased percentage correct in all categories. Interestingly, the highest error was seen in risk for postoperative coronal imbalance, with a very low rate of correct responses (15%) and not significantly improved with fellowship (18%, p = 0.08).

Conclusions

The results of this survey suggest that ASD knowledge could be improved in neurosurgery. Knowledge may be augmented with neurosurgical experience, spinal surgery fellowships, and spinal specialization. Neurosurgical education should particularly focus on radiology/spinal pelvic alignment, especially pelvic obliquity and coronal imbalance and operative techniques for ASD.

Free access

Carolyn J. Sparrey, Jeannie F. Bailey, Michael Safaee, Aaron J. Clark, Virginie Lafage, Frank Schwab, Justin S. Smith and Christopher P. Ames

The goal of this review is to discuss the mechanisms of postural degeneration, particularly the loss of lumbar lordosis commonly observed in the elderly in the context of evolution, mechanical, and biological studies of the human spine and to synthesize recent research findings to clinical management of postural malalignment. Lumbar lordosis is unique to the human spine and is necessary to facilitate our upright posture. However, decreased lumbar lordosis and increased thoracic kyphosis are hallmarks of an aging human spinal column. The unique upright posture and lordotic lumbar curvature of the human spine suggest that an understanding of the evolution of the human spinal column, and the unique anatomical features that support lumbar lordosis may provide insight into spine health and degeneration. Considering evolution of the skeleton in isolation from other scientific studies provides a limited picture for clinicians. The evolution and development of human lumbar lordosis highlight the interdependence of pelvic structure and lumbar lordosis. Studies of fossils of human lineage demonstrate a convergence on the degree of lumbar lordosis and the number of lumbar vertebrae in modern Homo sapiens. Evolution and spine mechanics research show that lumbar lordosis is dictated by pelvic incidence, spinal musculature, vertebral wedging, and disc health. The evolution, mechanics, and biology research all point to the importance of spinal posture and flexibility in supporting optimal health. However, surgical management of postural deformity has focused on restoring posture at the expense of flexibility. It is possible that the need for complex and costly spinal fixation can be eliminated by developing tools for early identification of patients at risk for postural deformities through patient history (genetics, mechanics, and environmental exposure) and tracking postural changes over time.

Full access

Aaron J. Clark, Jessica A. Tang, Jeremi M. Leasure, Michael E. Ivan, Dimitriy Kondrashov, Jenni M. Buckley, Vedat Deviren and Christopher P. Ames

Object

Reconstruction after total sacrectomy is a critical component of malignant sacral tumor resection, permitting early mobilization and maintenance of spinal pelvic alignment. However, implant loosening, graft migration, and instrumentation breakage remain major problems. Traditional techniques have used interiliac femoral allograft, but more modern methods have used fibular or cage struts from the ilium to the L-5 endplate or sacral body replacement with transiliac bars anchored to cages to the L-5 endplate. This study compares the biomechanical stability under gait-simulating fatigue loading of the 3 current methods.

Methods

Total sacrectomy was performed and reconstruction was completed using 3 different constructs in conjunction with posterior spinal screw rod instrumentation from L-3 to pelvis: interiliac femur strut allograft (FSA); L5–iliac cage struts (CSs); and S-1 body replacement expandable cage (EC). Intact lumbar specimens (L3–sacrum) were tested for flexion-extension range of motion (FE-ROM), axial rotation ROM (AX-ROM), and lateral bending ROM (LB-ROM). Each instrumented specimen was compared with its matched intact specimen to generate an ROM ratio. Fatigue testing in compression and flexion was performed using a custom-designed long fusion gait model.

Results

Compared with intact specimen, the FSA FE-ROM ratio was 1.22 ± 0.60, the CS FE-ROM ratio was significantly lower (0.37 ± 0.12, p < 0.001), and EC was lower still (0.29 ± 0.14, p < 0.001; values are expressed as the mean ± SD). The difference between CS and EC in FE-ROM ratio was not significant (p = 0.83). There were no differences in AX-ROM or LB-ROM ratios (p = 0.77 and 0.44, respectively). No failures were noted on fatigue testing of any EC construct (250,000 cycles). This was significantly improved compared with FSA (856 cycles, p < 0.001) and CS (794 cycles, p < 0.001).

Conclusions

The CS and EC appear to be significantly more stable constructs compared with FSA with FE-ROM. The 3 constructs appear to be equal with AX-ROM and LB-ROM. Most importantly, EC appears to be significantly more resistant to fatigue compared with FSA and CS. Reconstruction of the load transfer mechanism to the pelvis via the L-5 endplate appears to be important in maintenance of alignment after total sacrectomy reconstruction.

Full access

Aaron J. Clark, John E. Ziewacz, Michael Safaee, Darryl Lau, Russ Lyon, Dean Chou, Philip R. Weinstein, Christopher P. Ames, John P. Clark III and Praveen V. Mummaneni

Object

The use of intraoperative neurophysiological monitoring (IONM) in surgical decompression surgery for myelopathy may assist the surgeon in taking corrective measures to reduce or prevent permanent neurological deficits. We evaluated the efficacy of IONM in cervical and cervicothoracic spondylotic myelopathy (CSM) cases.

Methods

The authors retrospectively reviewed 140 cases involving patients who underwent surgery for CSM utilizing IONM during 2011 at the University of California, San Francisco. Data on preoperative clinical variables, intraoperative changes in transcranial motor evoked potentials (MEPs), and postoperative new neurological deficits were collected. Associations between categorical variables were analyzed with the Fisher exact test.

Results

Of the 140 patients, 16 (11%) had significant intraoperative decreases in MEPs. In 8 of these cases, the MEP signal did not return to baseline values by the end of the operation. There were 8 (6%) postoperative deficits, of which 6 were C-5 palsies and 2 were paraparesis. Six of the patients with postoperative deficits had demonstrated persistent MEP signal change on IONM. There was a significant association between persistent MEP changes and postoperative deficits (p < 0.001). The sensitivity of intraoperative MEP monitoring was 75%, the specificity 98%, the positive predictive value 75%, and the negative predictive value 98%. Due to higher rates of false negatives, the sensitivity decreased to 60% in the subgroup of patients with vascular disease comorbidity. The sensitivity increased to 100% in elderly patients and in patients with preoperative motor deficits. The sensitivity and positive predictive value of deltoid and biceps MEP changes in predicting C-5 palsy were 67% and 67%, respectively.

Conclusions

The authors found a correlation between decreased intraoperative MEPs and postoperative new neurological deficits in patients with CSM. Sensitivity varies based on patient comorbidities, age, and preoperative neurological function. Monitoring of MEPs is a useful adjunct for CSM cases, and the authors have developed a checklist to standardize their responses to intraoperative MEP changes.

Full access

Michael M. Safaee, Russ Lyon, Nicholas M. Barbaro, Dean Chou, Praveen V. Mummaneni, Philip R. Weinstein, Cynthia T. Chin, Tarik Tihan and Christopher P. Ames

OBJECTIVE

Among all primary spinal neoplasms, approximately two-thirds are intradural extramedullary lesions; nerve sheath tumors, mainly neurofibromas and schwannomas, comprise approximately half of them. Given the rarity of these lesions, reports of surgical complications are limited. The aim of this study was to identify the rates of new or worsening neurological deficits and surgical complications associated with the resection of spinal nerve sheath tumors and the potential factors related to these outcomes.

METHODS

Patients were identified through a search of an institutional neuropathology database and a separate review of current procedural terminology (CPT) codes. Age, sex, clinical presentation, presence of neurofibromatosis (NF), tumor type, tumor location, extent of resection characterized as gross total or subtotal, use of intraoperative neuromonitoring, surgical complications, presence of neurological deficit, and clinical follow-up were recorded.

RESULTS

Two hundred twenty-one tumors in 199 patients with a mean age of 45 years were identified. Fifty-three tumors were neurofibromas; 163, schwannomas; and 5, malignant peripheral nerve sheath tumors (MPNSTs). There were 70 complications in 221 cases, a rate of 32%, which included 34 new or worsening sensory symptoms (15%), 12 new or worsening motor deficits (5%), 10 CSF leaks or pseudomeningoceles (4%), 11 wound infections (5%), 5 cases of spinal deformity (2%), and 6 others (2 spinal epidural hematomas, 1 nonoperative cranial subdural hematoma, 1 deep venous thrombosis, 1 case of urinary retention, and 1 recurrent laryngeal nerve injury). Complications were more common in cervical (36%) and lumbosacral (38%) tumors than in thoracic (18%) lesions (p = 0.021). Intradural and dumbbell lesions were associated with higher rates of CSF leakage, pseudomeningocele, and wound infection. Complications were present in 18 neurofibromas (34%), 50 schwannomas (31%), and 2 MPNSTs (40%); the differences in frequency were not significant (p = 0.834). Higher complication rates were observed in patients with NF than in patients without (38% vs 30%, p = 0.189), although rates were higher in NF Type 2 than in Type 1 (64% vs 31%). There was no difference in the use of intraoperative neuromonitoring when comparing cases with surgical complications and those without (67% vs 69%, p = 0.797). However, the use of neuromonitoring was associated with a significantly higher rate of gross-total resection (79% vs 66%, p = 0.022).

CONCLUSIONS

Resection is a safe and effective treatment for spinal nerve sheath tumors. Approximately 30% of patients developed a postoperative complication, most commonly new or worsening sensory deficits. This rate probably represents an inevitable complication of nerve sheath tumor surgery given the intimacy of these lesions with functional neural elements.

Full access

Michael P. Kelly, Lawrence G. Lenke, Jakub Godzik, Ferran Pellise, Christopher I. Shaffrey, Justin S. Smith, Stephen J. Lewis, Christopher P. Ames, Leah Y. Carreon, Michael G. Fehlings, Frank Schwab and Adam L. Shimer

OBJECTIVE

The authors conducted a study to compare neurological deficit rates associated with complex adult spinal deformity (ASD) surgery when recorded in retrospective and prospective studies. Retrospective studies may underreport neurological deficits due to selection, detection, and recall biases. Prospective studies are expensive and more difficult to perform, but they likely provide more accurate estimates of new neurological deficit rates.

METHODS

New neurological deficits were recorded in a prospective study of complex ASD surgeries (pSR1) with a defined outcomes measure (decrement in American Spinal Injury Association lower-extremity motor score) for neurological deficits. Using identical inclusion criteria and a subset of participating surgeons, a retrospective study was created (rSR1) and neurological deficit rates were collected. Continuous variables were compared with the Student t-test, with correction for multiple comparisons. Neurological deficit rates were compared using the Mantel-Haenszel method for standardized risks. Statistical significance for the primary outcome measure was p < 0.05.

RESULTS

Overall, 272 patients were enrolled in pSR1 and 207 patients were enrolled in rSR1. Inclusion criteria, defining complex spinal deformities, and exclusion criteria were identical. Sagittal Cobb measurements were higher in pSR1, although sagittal alignment was similar. Preoperative neurological deficit rates were similar in the groups. Three-column osteotomies were more common in pSR1, particularly vertebral column resection. New neurological deficits were more common in pSR1 (pSR1 17.3% [95% CI 12.6–22.2] and rSR1 9.0% [95% CI 5.0–13.0]; p = 0.01). The majority of deficits in both studies were at the nerve root level, and the distribution of level of injury was similar.

CONCLUSIONS

New neurological deficit rates were nearly twice as high in the prospective study than the retrospective study with identical inclusion criteria. These findings validate concerns regarding retrospective cohort studies and confirm the need for and value of carefully designed prospective, observational cohort studies in ASD.