Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Ron Reeder x
  • User-accessible content x
Clear All Modify Search
Full access

Curtis J. Rozzelle, Casey Madura, and Ron W. Reeder

OBJECTIVE

Endoscopic third ventriculostomy with choroid plexus cauterization for the treatment of neonatal and infant hydrocephalus has gained popularity in the past decade. Identifying treatment failure is critically important. Results of a pilot study of 2 novel imaging markers seen on fast-sequence T2-weighted axial MRI showed potential clinical utility. However, the reliability of multiple raters detecting these markers must be established before a multicenter validation study can be performed.

METHODS

Two sets of de-identified single-shot T2-weighted turbo spin-echo axial images were prepared from scans of patients before and after they underwent endoscopic third ventriculostomy with choroid plexus cauterization between March 2013 and January 2016. The first set showed the lateral and third ventricles for visualization of turbulent CSF dynamics, and the second set showed the lateral ventricular atria for choroid plexus glomus detection. Three raters (Group 1) received written instructions before evaluating each image set once and then again 1 week later. Another 8 raters (Group 2) evaluated both image sets after oral instruction and group training on a pretest image set. Fleiss’ kappa coefficients with 95% CIs were calculated for intrarater and interrater reliability in Group 1 and interrater reliability in Group 2.

RESULTS

Intrarater reliability kappa coefficients for Group 1 were ≥ 0.74 for turbulence and ≥ 0.80 for choroid plexus; their interrater kappa coefficients at the initial assessment were 0.50 (95% CI 0.37–0.62) and 0.56 (95% CI 0.43–0.69), respectively. The Group 2 interrater kappa scores were 0.82 (95% CI 0.78–0.86) for turbulence and 0.62 (95% CI 0.58–0.66) for choroid plexus.

CONCLUSIONS

With minimal training, intrarater reliability on visualization of turbulence and the choroid plexus was substantial, but interrater reliability was only moderate. After modestly increasing training, interrater reliability improved to near perfect and to substantial reliability for visualization of turbulence and choroid plexus, respectively. Given adequately trained observers, a multicenter investigation into the validity and potential clinical utility of the imaging markers seems feasible.

Restricted access

Mandeep S. Tamber, John R. W. Kestle, Ron W. Reeder, Richard Holubkov, Jessica Alvey, Samuel R. Browd, James M. Drake, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Curtis J. Rozzelle, Tamara D. Simon, Robert Naftel, Chevis N. Shannon, John C. Wellons III, William E. Whitehead, Jay Riva-Cambrin, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Analysis of temporal trends in patient populations and procedure types may provide important information regarding the evolution of hydrocephalus treatment. The purpose of this study was to use the Hydrocephalus Clinical Research Network’s Core Data Project to identify meaningful trends in patient characteristics and the surgical management of pediatric hydrocephalus over a 9-year period.

METHODS

The Core Data Project prospectively collected patient and procedural data on the study cohort from 9 centers between 2008 and 2016. Logistic and Poisson regression were used to test for significant temporal trends in patient characteristics and new and revision hydrocephalus procedures.

RESULTS

The authors analyzed 10,149 procedures in 5541 patients. New procedures for hydrocephalus (shunt or endoscopic third ventriculostomy [ETV]) decreased by 1.5%/year (95% CI −3.1%, +0.1%). During the study period, new shunt insertions decreased by 6.5%/year (95% CI −8.3%, −4.6%), whereas new ETV procedures increased by 12.5%/year (95% CI 9.3%, 15.7%). Revision procedures for hydrocephalus (shunt or ETV) decreased by 4.2%/year (95% CI −5.2%, −3.1%), driven largely by a decrease of 5.7%/year in shunt revisions (95% CI −6.8%, −4.6%). Concomitant with the observed increase in new ETV procedures was an increase in ETV revisions (13.4%/year, 95% CI 9.6%, 17.2%). Because revisions decreased at a faster rate than new procedures, the Revision Quotient (ratio of revisions to new procedures) for the Network decreased significantly over the study period (p = 0.0363). No temporal change was observed in the age or etiology characteristics of the cohort, although the proportion of patients with one or more complex chronic conditions significantly increased over time (p = 0.0007).

CONCLUSIONS

Over a relatively short period, important changes in hydrocephalus care have been observed. A significant temporal decrease in revision procedures amid the backdrop of a more modest change in new procedures appears to be the most notable finding and may be indicative of an improvement in the quality of surgical care for pediatric hydrocephalus. Further studies will be directed at elucidation of the possible drivers of the observed trends.

Free access

Jay Riva-Cambrin, John R. W. Kestle, Curtis J. Rozzelle, Robert P. Naftel, Jessica S. Alvey, Ron W. Reeder, Richard Holubkov, Samuel R. Browd, D. Douglas Cochrane, David D. Limbrick Jr., Chevis N. Shannon, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III, William E. Whitehead, Abhaya V. Kulkarni, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Endoscopic third ventriculostomy combined with choroid plexus cauterization (ETV+CPC) has been adopted by many pediatric neurosurgeons as an alternative to placing shunts in infants with hydrocephalus. However, reported success rates have been highly variable, which may be secondary to patient selection, operative technique, and/or surgeon training. The objective of this prospective multicenter cohort study was to identify independent patient selection, operative technique, or surgical training predictors of ETV+CPC success in infants.

METHODS

This was a prospective cohort study nested within the Hydrocephalus Clinical Research Network’s (HCRN) Core Data Project (registry). All infants under the age of 2 years who underwent a first ETV+CPC between June 2006 and March 2015 from 8 HCRN centers were included. Each patient had a minimum of 6 months of follow-up unless censored by an ETV+CPC failure. Patient and operative risk factors of failure were examined, as well as formal ETV+CPC training, which was defined as traveling to and working with the experienced surgeons at CURE Children’s Hospital of Uganda. ETV+CPC failure was defined as the need for repeat ETV, shunting, or death.

RESULTS

The study contained 191 patients with a primary ETV+CPC conducted by 17 pediatric neurosurgeons within the HCRN. Infants under 6 months corrected age at the time of ETV+CPC represented 79% of the cohort. Myelomeningocele (26%), intraventricular hemorrhage associated with prematurity (24%), and aqueductal stenosis (17%) were the most common etiologies. A total of 115 (60%) of the ETV+CPCs were conducted by surgeons after formal training. Overall, ETV+CPC was successful in 48%, 46%, and 45% of infants at 6 months, 1 year, and 18 months, respectively. Young age (< 1 month) (adjusted hazard ratio [aHR] 1.9, 95% CI 1.0–3.6) and an etiology of post–intraventricular hemorrhage secondary to prematurity (aHR 2.0, 95% CI 1.1–3.6) were the only two independent predictors of ETV+CPC failure. Specific subgroups of ages within etiology categories were identified as having higher ETV+CPC success rates. Although training led to more frequent use of the flexible scope (p < 0.001) and higher rates of complete (> 90%) CPC (p < 0.001), training itself was not independently associated (aHR 1.1, 95% CI 0.7–1.8; p = 0.63) with ETV+CPC success.

CONCLUSIONS

This is the largest prospective multicenter North American study to date examining ETV+CPC. Formal ETV+CPC training was not found to be associated with improved procedure outcomes. Specific subgroups of ages within specific hydrocephalus etiologies were identified that may preferentially benefit from ETV+CPC.

Free access

Christopher M. Bonfield, Chevis N. Shannon, Ron W. Reeder, Samuel Browd, James Drake, Jason S. Hauptman, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Robert Naftel, Ian F. Pollack, Jay Riva-Cambrin, Curtis Rozzelle, Mandeep S. Tamber, William E. Whitehead, John R. W. Kestle, John C. Wellons III, and for the Hydrocephalus Clinical Research Network (HCRN)

OBJECTIVE

Hydrocephalus may be seen in patients with multisuture craniosynostosis and, less commonly, single-suture craniosynostosis. The optimal treatment for hydrocephalus in this population is unknown. In this study, the authors aimed to evaluate the success rate of ventriculoperitoneal shunt (VPS) treatment and endoscopic third ventriculostomy (ETV) both with and without choroid plexus cauterization (CPC) in patients with craniosynostosis.

METHODS

Utilizing the Hydrocephalus Clinical Research Network (HCRN) Core Data Project (Registry), the authors identified all patients who underwent treatment for hydrocephalus associated with craniosynostosis. Descriptive statistics, demographics, and surgical outcomes were evaluated.

RESULTS

In total, 42 patients underwent treatment for hydrocephalus associated with craniosynostosis. The median gestational age at birth was 39.0 weeks (IQR 38.0, 40.0); 55% were female and 60% were White. The median age at first craniosynostosis surgery was 0.6 years (IQR 0.3, 1.7), and at the first permanent hydrocephalus surgery it was 1.2 years (IQR 0.5, 2.5). Thirty-three patients (79%) had multiple different sutures fused, and 9 had a single suture: 3 unicoronal (7%), 3 sagittal (7%), 2 lambdoidal (5%), and 1 unknown (2%). Syndromes were identified in 38 patients (90%), with Crouzon syndrome being the most common (n = 16, 42%). Ten patients (28%) received permanent hydrocephalus surgery before the first craniosynostosis surgery. Twenty-eight patients (67%) underwent VPS treatment, with the remaining 14 (33%) undergoing ETV with or without CPC (ETV ± CPC). Within 12 months after initial hydrocephalus intervention, 14 patients (34%) required revision (8 VPS and 6 ETV ± CPC). At the most recent follow-up, 21 patients (50%) required a revision. The revision rate decreased as age increased. The overall infection rate was 5% (VPS 7%, 0% ETV ± CPC).

CONCLUSIONS

This is the largest prospective study reported on children with craniosynostosis and hydrocephalus. Hydrocephalus in children with craniosynostosis most commonly occurs in syndromic patients and multisuture fusion. It is treated at varying ages; however, most patients undergo surgery for craniosynostosis prior to hydrocephalus treatment. While VPS treatment is performed more frequently, VPS and ETV are both reasonable options, with decreasing revision rates with increasing age, for the treatment of hydrocephalus associated with craniosynostosis.

Restricted access

Mandeep S. Tamber, John R. W. Kestle, Ron W. Reeder, Richard Holubkov, Jessica Alvey, Samuel R. Browd, James M. Drake, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Curtis J. Rozzelle, Tamara D. Simon, Robert Naftel, Chevis N. Shannon, John C. Wellons III, William E. Whitehead, Jay Riva-Cambrin, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Analysis of temporal trends in patient populations and procedure types may provide important information regarding the evolution of hydrocephalus treatment. The purpose of this study was to use the Hydrocephalus Clinical Research Network’s Core Data Project to identify meaningful trends in patient characteristics and the surgical management of pediatric hydrocephalus over a 9-year period.

METHODS

The Core Data Project prospectively collected patient and procedural data on the study cohort from 9 centers between 2008 and 2016. Logistic and Poisson regression were used to test for significant temporal trends in patient characteristics and new and revision hydrocephalus procedures.

RESULTS

The authors analyzed 10,149 procedures in 5541 patients. New procedures for hydrocephalus (shunt or endoscopic third ventriculostomy [ETV]) decreased by 1.5%/year (95% CI −3.1%, +0.1%). During the study period, new shunt insertions decreased by 6.5%/year (95% CI −8.3%, −4.6%), whereas new ETV procedures increased by 12.5%/year (95% CI 9.3%, 15.7%). Revision procedures for hydrocephalus (shunt or ETV) decreased by 4.2%/year (95% CI −5.2%, −3.1%), driven largely by a decrease of 5.7%/year in shunt revisions (95% CI −6.8%, −4.6%). Concomitant with the observed increase in new ETV procedures was an increase in ETV revisions (13.4%/year, 95% CI 9.6%, 17.2%). Because revisions decreased at a faster rate than new procedures, the Revision Quotient (ratio of revisions to new procedures) for the Network decreased significantly over the study period (p = 0.0363). No temporal change was observed in the age or etiology characteristics of the cohort, although the proportion of patients with one or more complex chronic conditions significantly increased over time (p = 0.0007).

CONCLUSIONS

Over a relatively short period, important changes in hydrocephalus care have been observed. A significant temporal decrease in revision procedures amid the backdrop of a more modest change in new procedures appears to be the most notable finding and may be indicative of an improvement in the quality of surgical care for pediatric hydrocephalus. Further studies will be directed at elucidation of the possible drivers of the observed trends.

Free access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Curtis J. Rozzelle, Robert P. Naftel, Jessica S. Alvey, Ron W. Reeder, Richard Holubkov, Samuel R. Browd, D. Douglas Cochrane, David D. Limbrick Jr., Tamara D. Simon, Mandeep Tamber, John C. Wellons III, William E. Whitehead, and John R. W. Kestle

OBJECTIVE

High-quality data comparing endoscopic third ventriculostomy (ETV) with choroid plexus cauterization (CPC) to shunt and ETV alone in North America are greatly lacking. To address this, the Hydrocephalus Clinical Research Network (HCRN) conducted a prospective study of ETV+CPC in infants. Here, these prospective data are presented and compared to prospectively collected data from a historical cohort of infants treated with shunt or ETV alone.

METHODS

From June 2014 to September 2015, infants (corrected age ≤ 24 months) requiring treatment for hydrocephalus with anatomy suitable for ETV+CPC were entered into a prospective study at 9 HCRN centers. The rate of procedural failure (i.e., the need for repeat hydrocephalus surgery, hydrocephalus-related death, or major postoperative neurological deficit) was determined. These data were compared with a cohort of similar infants who were treated with either a shunt (n = 969) or ETV alone (n = 74) by creating matched pairs on the basis of age and etiology. These data were obtained from the existing prospective HCRN Core Data Project. All patients were observed for at least 6 months.

RESULTS

A total of 118 infants underwent ETV+CPC (median corrected age 1.3 months; common etiologies including myelomeningocele [30.5%], intraventricular hemorrhage of prematurity [22.9%], and aqueductal stenosis [21.2%]). The 6-month success rate was 36%. The most common complications included seizures (5.1%) and CSF leak (3.4%). Important predictors of treatment success in the survival regression model included older age (p = 0.002), smaller preoperative ventricle size (p = 0.009), and greater degree of CPC (p = 0.02). The matching algorithm resulted in 112 matched pairs for ETV+CPC versus shunt alone and 34 matched pairs for ETV+CPC versus ETV alone. ETV+CPC was found to have significantly higher failure rate than shunt placement (p < 0.001). Although ETV+CPC had a similar failure rate compared with ETV alone (p = 0.73), the matched pairs included mostly infants with aqueductal stenosis and miscellaneous other etiologies but very few patients with intraventricular hemorrhage of prematurity.

CONCLUSIONS

Within a large and broad cohort of North American infants, our data show that overall ETV+CPC appears to have a higher failure rate than shunt alone. Although the ETV+CPC results were similar to ETV alone, this comparison was limited by the small sample size and skewed etiological distribution. Within the ETV+CPC group, greater extent of CPC was associated with treatment success, thereby suggesting that there are subgroups who might benefit from the addition of CPC. Further work will focus on identifying these subgroups.

Free access

Jonathan Pindrik, Jay Riva-Cambrin, Abhaya V. Kulkarni, Jessica S. Alvey, Ron W. Reeder, Ian F. Pollack, John C. Wellons III, Eric M. Jackson, Curtis J. Rozzelle, William E. Whitehead, David D. Limbrick Jr., Robert P. Naftel, Chevis Shannon, Patrick J. McDonald, Mandeep S. Tamber, Todd C. Hankinson, Jason S. Hauptman, Tamara D. Simon, Mark D. Krieger, Richard Holubkov, John R. W. Kestle, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Few studies have addressed surgical resource utilization—surgical revisions and associated hospital admission days—following shunt insertion or endoscopic third ventriculostomy (ETV) with or without choroid plexus cauterization (CPC) for CSF diversion in hydrocephalus. Study members of the Hydrocephalus Clinical Research Network (HCRN) investigated differences in surgical resource utilization between CSF diversion strategies in hydrocephalus in infants.

METHODS

Patients up to corrected age 24 months undergoing initial definitive treatment of hydrocephalus were reviewed from the prospectively maintained HCRN Core Data Project (Hydrocephalus Registry). Postoperative courses (at 1, 3, and 5 years) were studied for hydrocephalus-related surgeries (primary outcome) and hospital admission days related to surgical revision (secondary outcome). Data were summarized using descriptive statistics and compared using negative binomial regression, controlling for age, hydrocephalus etiology, and HCRN center. The study population was organized into 3 groups (ETV alone, ETV with CPC, and CSF shunt insertion) during the 1st postoperative year and 2 groups (ETV alone and CSF shunt insertion) during subsequent years due to limited long-term follow-up data.

RESULTS

Among 1090 patients, the majority underwent CSF shunt insertion (CSF shunt, 83.5%; ETV with CPC, 10.0%; and ETV alone, 6.5%). Patients undergoing ETV with CPC had a higher mean number of revision surgeries (1.2 ± 1.6) than those undergoing ETV alone (0.6 ± 0.8) or CSF shunt insertion (0.7 ± 1.3) over the 1st year after surgery (p = 0.005). At long-term follow-up, patients undergoing ETV alone experienced a nonsignificant lower mean number of revision surgeries (0.7 ± 0.9 at 3 years and 0.8 ± 1.3 at 5 years) than those undergoing CSF shunt insertion (1.1 ± 1.9 at 3 years and 1.4 ± 2.6 at 5 years) and exhibited a lower mean number of hospital admission days related to revision surgery (3.8 ± 10.3 vs 9.9 ± 27.0, p = 0.042).

CONCLUSIONS

Among initial treatment strategies for hydrocephalus, ETV with CPC yielded a higher surgical revision rate within 1 year after surgery. Patients undergoing ETV alone exhibited a nonsignificant lower mean number of surgical revisions than CSF shunt insertion at 3 and 5 years postoperatively. Additionally, the ETV-alone cohort demonstrated significantly fewer hospital admission days related to surgical management of hydrocephalus within 3 years after surgery. These findings suggest a time-dependent benefit of ETV over CSF shunt insertion regarding surgical resource utilization.

Restricted access

Aaron M. Yengo-Kahn, John C. Wellons III, Todd C. Hankinson, Jason S. Hauptman, Eric M. Jackson, Hailey Jensen, Mark D. Krieger, Abhaya V. Kulkarni, David. D. Limbrick Jr., Patrick J. McDonald, Robert P. Naftel, Jonathan A. Pindrik, Ian F. Pollack, Ron Reeder, Jay Riva-Cambrin, Curtis J. Rozzelle, Mandeep S. Tamber, William E. Whitehead, John R. W. Kestle, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Treating Dandy-Walker syndrome–related hydrocephalus (DWSH) involves either a CSF shunt-based or endoscopic third ventriculostomy (ETV)–based procedure. However, comparative investigations are lacking. This study aimed to compare shunt-based and ETV-based treatment strategies utilizing archival data from the Hydrocephalus Clinical Research Network (HCRN) registry.

METHODS

A retrospective review of prospectively collected and maintained data on children with DWSH, available from the HCRN registry (14 sites, 2008–2018), was performed. The primary outcome was revision-free survival of the initial surgical intervention. The primary exposure was either shunt-based (i.e., cystoperitoneal shunt [CPS], ventriculoperitoneal shunt [VPS], and/or dual-compartment) or ETV-based (i.e., ETV alone or with choroid plexus cauterization [CPC]) initial surgical treatment. Primary analysis included multivariable Cox proportional hazards models.

RESULTS

Of 8400 HCRN patients, 151 (1.8%) had DWSH. Among these, the 102 patients who underwent shunt placement (79 VPSs, 16 CPSs, 3 other, and 4 multiple proximal catheter) were younger (6.6 vs 18.8 months, p < 0.001) and more frequently had 1 or more comorbidities (37.3% vs 14.3%, p = 0.005) than the 49 ETV-treated children (28 ETV-CPC). Fifty percent of the shunt-based and 51% of the ETV-based treatments failed. Notably, 100% (4/4) of the dual-compartment shunts failed. Adjusting for age, baseline ventricular size, and comorbidities, ETV-based treatment was not significantly associated with earlier failure compared with shunt-based treatment (HR for failure 1.32, 95% CI 0.77–2.26; p = 0.321). Complication rates were low: 4.9% and 6.1% (p = 0.715) for shunt- and ETV-based procedures, respectively. There was no difference in survival between ETV-CPC– and ETV-based treatment when adjusting for age (HR for failure 0.86, 95% CI 0.29–2.55, p = 0.783).

CONCLUSIONS

In this North American, multicenter, prospective database review, shunt-based and ETV-based primary treatment strategies of DWSH appear similarly durable. Pediatric neurosurgeons can reasonably consider ETV-based initial treatment given the similar durability and the low complication rate. However, given the observational nature of this study, the treating surgeon might need to consider subgroups that were too small for a separate analysis. Very young children with comorbidities were more commonly treated with shunts, and older children with fewer comorbidities were offered ETV-based treatment. Future studies may determine preoperative characteristics associated with ETV treatment success in this population.

Restricted access

Jason S. Hauptman, John Kestle, Jay Riva-Cambrin, Abhaya V. Kulkarni, Samuel R. Browd, Curtis J. Rozzelle, William E. Whitehead, Robert P. Naftel, Jonathan Pindrik, David D. Limbrick Jr., James Drake, John C. Wellons III, Mandeep S. Tamber, Chevis N. Shannon, Tamara D. Simon, Ian F. Pollack, Patrick J. McDonald, Mark D. Krieger, Jason Chu, Todd C. Hankinson, Eric M. Jackson, Jessica S. Alvey, Ron W. Reeder, Richard Holubkov, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

The primary objective of this study was to use the prospective Hydrocephalus Clinical Research Network (HCRN) registry to determine clinical predictors of fast time to shunt failure (≤ 30 days from last revision) and ultrafast time to failure (≤ 7 days from last revision).

METHODS

Revisions (including those due to infection) to permanent shunt placements that occurred between April 2008 and November 2017 for patients whose entire shunt experience was recorded in the registry were analyzed. All registry data provided at the time of initial shunt placement and subsequent revision were reviewed. Key variables analyzed included etiology of hydrocephalus, age at time of initial shunt placement, presence of slit ventricles on imaging at revision, whether the ventricles were enlarged at the time of revision, and presence of prior fast failure events. Univariable and multivariable analyses were performed to find key predictors of fast and ultrafast failure events.

RESULTS

A cohort of 1030 patients with initial shunt insertions experienced a total of 1995 revisions. Of the 1978 revision events with complete records, 1216 (61.5%) shunts remained functional for more than 1 year, and 762 (38.5%) failed within 1 year of the procedure date. Of those that failed within 1 year, 423 (55.5%) failed slowly (31–365 days) and 339 (44.5%) failed fast (≤ 30 days). Of the fast failures, 131 (38.6%) were ultrafast (≤ 7 days). In the multivariable analysis specified a priori, etiology of hydrocephalus (p = 0.005) and previous failure history (p = 0.011) were independently associated with fast failure. Age at time of procedure (p = 0.042) and etiology of hydrocephalus (p = 0.004) were independently associated with ultrafast failure. These relationships in both a priori models were supported by the data-driven multivariable models as well.

CONCLUSIONS

Neither the presence of slit ventricle syndrome nor ventricular enlargement at the time of shunt failure appears to be a significant predictor of repeated, rapid shunt revisions. Age at the time of procedure, etiology of hydrocephalus, and the history of previous failure events seem to be important predictors of fast and ultrafast shunt failure. Further work is required to understand the mechanisms of these risk factors as well as mitigation strategies.