Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Magdalena Kasprowicz x
  • Journal of Neurosurgery x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Short pressure reactivity index versus long pressure reactivity index in the management of traumatic brain injury

Erhard W. Lang, Magdalena Kasprowicz, Peter Smielewski, Edgar Santos, John Pickard, and Marek Czosnyka

OBJECT

The pressure reactivity index (PRx) correlates with outcome after traumatic brain injury (TBI) and is used to calculate optimal cerebral perfusion pressure (CPPopt). The PRx is a correlation coefficient between slow, spontaneous changes (0.003–0.05 Hz) in intracranial pressure (ICP) and arterial blood pressure (ABP). A novel index—the so-called long PRx (L-PRx)—that considers ABP and ICP changes (0.0008–0.008 Hz) was proposed.

METHODS

The authors compared PRx and L-PRx for 6-month outcome prediction and CPPopt calculation in 307 patients with TBI. The PRx- and L-PRx–based CPPopt were determined and the predictive power and discriminant abilities were compared.

RESULTS

The PRx and L-PRx correlation was good (R = 0.7, p < 0.00001; Spearman test). The PRx, age, CPP, and Glasgow Coma Scale score but not L-PRx were significant fatal outcome predictors (death and persistent vegetative state). There was a significant difference between the areas under the receiver operating characteristic curves calculated for PRx and L-PRx (0.61 ± 0.04 vs 0.51 ± 0.04; z-statistic = −3.26, p = 0.011), which indicates a better ability by PRx than L-PRx to predict fatal outcome. The CPPopt was higher for L-PRx than for PRx, without a statistical difference (median CPPopt for L-PRx: 76.9 mm Hg, interquartile range [IQR] ± 10.1 mm Hg; median CPPopt for PRx: 74.7 mm Hg, IQR ± 8.2 mm Hg). Death was associated with CPP below CPPopt for PRx (χ2 = 30.6, p < 0.00001), and severe disability was associated with CPP above CPPopt for PRx (χ2 = 7.8, p = 0.005). These relationships were not statistically significant for CPPopt for L-PRx.

CONCLUSIONS

The PRx is superior to the L-PRx for TBI outcome prediction. Individual CPPopt for L-PRx and PRx are not statistically different. Deviations between CPP and CPPopt for PRx are relevant for outcome prediction; those between CPP and CPPopt for L-PRx are not. The PRx uses the entire B-wave spectrum for index calculation, whereas the L-PRX covers only one-third of it. This may explain the performance discrepancy.

Open access

Analysis of intracranial pressure pulse waveform in traumatic brain injury patients: a CENTER-TBI study

Agnieszka Uryga, Arkadiusz Ziółkowski, Agnieszka Kazimierska, Agata Pudełko, Cyprian Mataczyński, Erhard W. Lang, Marek Czosnyka, Magdalena Kasprowicz, and the CENTER-TBI High-Resolution ICU (HR ICU) Sub-Study Participants and Investigators

OBJECTIVE

Intracranial pressure (ICP) pulse waveform analysis may provide valuable information about cerebrospinal pressure-volume compensation in patients with traumatic brain injury (TBI). The authors applied spectral methods to analyze ICP waveforms in terms of the pulse amplitude of ICP (AMP), high frequency centroid (HFC), and higher harmonics centroid (HHC) and also used a morphological classification approach to assess changes in the shape of ICP pulse waveforms using the pulse shape index (PSI).

METHODS

The authors included 184 patients from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) High-Resolution Sub-Study in the analysis. HFC was calculated as the average power-weighted frequency within the 4- to 15-Hz frequency range of the ICP power density spectrum. HHC was defined as the center of mass of the ICP pulse waveform harmonics from the 2nd to the 10th. PSI was defined as the weighted sum of artificial intelligence–based ICP pulse class numbers from 1 (normal pulse waveform) to 4 (pathological waveform).

RESULTS

AMP and PSI increased linearly with mean ICP. HFC increased proportionally to ICP until the upper breakpoint (average ICP of 31 mm Hg), whereas HHC slightly increased with ICP and then decreased significantly when ICP exceeded 25 mm Hg. AMP (p < 0.001), HFC (p = 0.003), and PSI (p < 0.001) were significantly greater in patients who died than in patients who survived. Among those patients with low ICP (< 15 mm Hg), AMP, PSI, and HFC were greater in those with poor outcome than in those with good outcome (all p < 0.001).

CONCLUSIONS

Whereas HFC, AMP, and PSI could be used as predictors of mortality, HHC may potentially serve as an early warning sign of intracranial hypertension. Elevated HFC, AMP, and PSI were associated with poor outcome in TBI patients with low ICP.