Search Results

You are looking at 51 - 60 of 92 items for

  • Author or Editor: Andres M. Lozano x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Editorial

Deep brain stimulation for Parkinson disease

Andres M. Lozano

Full access

Activation of the anterior cingulate cortex by thalamic stimulation in patients with chronic pain: a positron emission tomography study

Karen D. Davis, Ethan Taub, Frank Duffner, Andres M. Lozano, Ronald R. Tasker, Sylvain Houle, and Jonathan O. Dostrovsky

Object

Deep brain stimulation (DBS) of the sensory thalamus has been used to treat chronic, intractable pain. The goal of this study was to investigate the thalamocortical pathways activated during thalamic DBS.

Methods

The authors compared positron emission tomography (PET) images obtained before, during, and after DBS in five patients with chronic pain. Two of the five patients reported significant DBS-induced pain relief during PET scanning, and the remaining three patients did not report any analgesic effect of DBS during scanning. The most robust effect associated with DBS was activation of the anterior cingulate cortex (ACC). An anterior ACC activation was sustained throughout the 40 minutes of DBS, whereas a more posteriorly located ACC activation occurred at a delay after onset of DBS, although these activations were not dependent on the degree of pain relief reported during DBS. However, implications specific to the analgesic effect of DBS require further study of a larger, more homogeneous patient population. Additional effects of thalamic DBS were detected in motor-related regions (the globus pallidus, cortical area 4, and the cerebellum) and visual and association cortical areas.

Conclusions

The authors demonstrate that the ACC is activated during thalamic DBS in patients with chronic pain.

Restricted access

Activation of the anterior cingulate cortex by thalamic stimulation in patients with chronic pain: a positron emission tomography study

Karen D. Davis, Ethan Taub, Frank Duffner, Andres M. Lozano, Ronald R. Tasker, Sylvain Houle, and Jonathan O. Dostrovsky

Object. Deep brain stimulation (DBS) of the sensory thalamus has been used to treat chronic, intractable pain. The goal of this study was to investigate the thalamocortical pathways activated during thalamic DBS.

Methods. The authors compared positron emission tomography (PET) images obtained before, during, and after DBS in five patients with chronic pain. Two of the five patients reported significant DBS-induced pain relief during PET scanning, and the remaining three patients did not report any analgesic effect of DBS during scanning. The most robust effect associated with DBS was activation of the anterior cingulate cortex (ACC). An anterior ACC activation was sustained throughout the 40 minutes of DBS, whereas a more posteriorly located ACC activation occurred at a delay after onset of DBS, although these activations were not dependent on the degree of pain relief reported during DBS. However, implications specific to the analgesic effect of DBS require further study of a larger, more homogeneous patient population. Additional effects of thalamic DBS were detected in motor-related regions (the globus pallidus, cortical area 4, and the cerebellum) and visual and association cortical areas.

Conclusions. The authors demonstrate that the ACC is activated during thalamic DBS in patients with chronic pain.

Restricted access

Stereotactic Pallidotomy

Restricted access

Editorial: Not everything that matters can be measured and not everything that can be measured matters

Bryan D. Choi, Peter E. Fecci, and John H. Sampson

Restricted access

Stereotactic Pallidotomy

Restricted access

Microelectrode recording findings within the tractography-defined ventral intermediate nucleus

Nicolas Kon Kam King, Vibhor Krishna, Diellor Basha, Gavin Elias, Francesco Sammartino, Mojgan Hodaie, Andres M. Lozano, and William D. Hutchison

OBJECTIVE

The ventral intermediate nucleus (VIM) of the thalamus is not visible on structural MRI. Therefore, direct VIM targeting methods for stereotactic tremor surgery are desirable. The authors previously described a direct targeting method for visualizing the VIM and its structural connectivity using deterministic tractography. In this combined electrophysiology and imaging study, the authors investigated the electrophysiology within this tractography-defined VIM (T-VIM).

METHODS

Thalamic neurons were classified based on their relative location to the T-VIM: dorsal, within, and ventral to the T-VIM. The authors identified the movement-responsive cells (kinesthetic and tremor cells), performed spike analysis (firing rate and burst index), and local field potential analysis (area under the curve for 13–30 Hz). Tremor efficacy in response to microstimulation along the electrode trajectory was also assessed in relation to the T-VIM.

RESULTS

Seventy-three cells from a total of 9 microelectrode tracks were included for this analysis. Movement-responsive cells (20 kinesthetic cells and 26 tremor cells) were identified throughout the electrode trajectories. The mean firing rate and burst index of cells (n = 27) within the T-VIM are 18.8 ± 9.8 Hz and 4.5 ± 5.4, respectively. Significant local field potential beta power was identified within the T-VIM (area under the curve for 13–30 Hz = 6.6 ± 7.7) with a trend toward higher beta power in the dorsal T-VIM. The most significant reduction in tremor was also observed in the dorsal T-VIM.

CONCLUSIONS

The electrophysiological findings within the VIM thalamus defined by tractography, or T-VIM, correspond with the known microelectrode recording characteristics of the VIM in patients with tremor.

Restricted access

Prediction and detection of seizures from simultaneous thalamic and scalp electroencephalography recordings

Rosa Q. So, Vibhor Krishna, Nicolas Kon Kam King, Huijuan Yang, Zhuo Zhang, Francesco Sammartino, Andres M. Lozano, Richard A. Wennberg, and Cuntai Guan

OBJECTIVE

The authors explored the feasibility of seizure detection and prediction using signals recorded from the anterior thalamic nucleus, a major target for deep brain stimulation (DBS) in the treatment of epilepsy.

METHODS

Using data from 5 patients (13 seizures in total), the authors performed a feasibility study and analyzed the performance of a seizure prediction and detection algorithm applied to simultaneously acquired scalp and thalamic electroencephalography (EEG). The thalamic signal was obtained from DBS electrodes. The applied algorithm used the similarity index as a nonlinear measure for seizure identification, with patient-specific channel and threshold selection. Receiver operating characteristic (ROC) curves were calculated using data from all patients and channels to compare the performance between DBS and EEG recordings.

RESULTS

Thalamic DBS recordings were associated with a mean prediction rate of 84%, detection rate of 97%, and false-alarm rate of 0.79/hr. In comparison, scalp EEG recordings were associated with a mean prediction rate of 71%, detection rate of 100%, and false-alarm rate of 1.01/hr. From the ROC curves, when considering all channels, DBS outperformed EEG for both detection and prediction of seizures.

CONCLUSIONS

This is the first study to compare automated seizure detection and prediction from simultaneous thalamic and scalp EEG recordings. The authors have demonstrated that signals recorded from DBS leads are more robust than EEG recordings and can be used to predict and detect seizures. These results indicate feasibility for future designs of closed-loop anterior nucleus DBS systems for the treatment of epilepsy.

Restricted access

Gamma oscillations in the somatosensory thalamus of a patient with a phantom limb: case report

Diellor Basha, Jonathan O. Dostrovsky, Suneil K. Kalia, Mojgan Hodaie, Andres M. Lozano, and William D. Hutchison

The amputation of an extremity is commonly followed by phantom sensations that are perceived to originate from the missing limb. The mechanism underlying the generation of these sensations is still not clear although the development of abnormal oscillatory bursting in thalamic neurons may be involved. The theory of thalamocortical dysrhythmia implicates gamma oscillations in phantom pathophysiology although this rhythm has not been previously observed in the phantom limb thalamus. In this study, the authors report the novel observation of widespread 38-Hz gamma oscillatory activity in spike and local field potential recordings obtained from the ventral caudal somatosensory nucleus of the thalamus (Vc) of a phantom limb patient undergoing deep brain stimulation (DBS) surgery. Interestingly, microstimulation near tonically firing cells in the Vc resulted in high-frequency, gamma oscillatory discharges coincident with phantom sensations reported by the patient. Recordings from the somatosensory thalamus of comparator groups (essential tremor and pain) did not reveal the presence of gamma oscillatory activity.

Free access

Letter to the Editor. Clinical Rating Scale for Tremor: a needed clarification

Can Sarica, Anton Fomenko, Christian Iorio-Morin, Ajmal Zemmar, Kazuaki Yamamoto, Artur Vetkas, Andres M. Lozano, and Alfonso Fasano