Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Andreas Raabe x
  • Refine by Access: all x
  • By Author: Vatter, Hartmut x
  • By Author: Güresir, Erdem x
Clear All Modify Search
Full access

Juergen Konczalla, Volker Seifert, Juergen Beck, Erdem Güresir, Hartmut Vatter, Andreas Raabe, and Gerhard Marquardt


Outcome analysis of comatose patients (Hunt and Hess Grade V) after subarachnoid hemorrhage (SAH) is still lacking. The aims of this study were to analyze the outcome of Hunt and Hess Grade V SAH and to compare outcomes in the current period with those of the pre–International Subarachnoid Aneurysm Trial (ISAT) era as well as with published data from trials of decompressive craniectomy (DC) for middle cerebral artery (MCA) infarction.


The authors analyzed cases of Hunt and Hess Grade V SAH from 1980–1995 (referred to in this study as the earlier period) and 2005–2014 (current period) and compared the results for the 2 periods. The outcomes of 257 cases were analyzed and stratified on the basis of modified Rankin Scale (mRS) scores obtained 6 months after SAH. Outcomes were dichotomized as favorable (mRS score of 0–2) or unfavorable (mRS score of 3–6). Data and number needed to treat (NNT) were also compared with the results of decompressive craniectomy (DC) trials for middle cerebral artery (MCA) infarctions.


Early aneurysm treatment within 72 hours occurred significantly more often in the current period (in 67% of cases vs 22% in earlier period). In the earlier period, patients had a significantly higher 30-day mortality rate (83% vs 39% in the current period) and 6-month mortality rate (94% vs 49%), and no patient (0%) had a favorable outcome, compared with 23% overall in the current period (p < 0.01, OR 32), or 29.5% of patients whose aneurysms were treated (p < 0.01, OR 219). Cerebral infarctions occurred in up to 65% of the treated patients in the current period.

Comparison with data from DC MCA trials showed that the NNTs were significantly lower in the current period with 2 for survival and 3 for mRS score of 0–3 (vs 3 and 7, respectively, for the DC MCA trials).


Early and aggressive treatment resulted in a significant improvement in survival rate (NNT = 2) and favorable outcome (NNT = 3 for mRS score of 0–3) for comatose patients with Hunt and Hess Grade V SAH compared with the earlier period. Independent predictors for favorable outcome were younger age and bilateral intact corneal reflexes. Despite a high rate of cerebral infarction (65%) in the current period, 29.5% of the patients who received treatment for their aneurysms during the current era (2005–2014) had a favorable outcome. However, careful individual decision making is essential in these cases.

Restricted access

Erdem Güresir, Hartmut Vatter, Patrick Schuss, Ági Oszvald, Andreas Raabe, Volker Seifert, and Jürgen Beck


The object of this study was to describe the rapid closure technique in decompressive craniectomy without duraplasty and its use in a large cohort of consecutive patients.


Between 1999 and 2008, supratentorial rapid closure decompressive craniectomy (RCDC) was performed 341 times in 318 patients at the authors' institution. Cases were stratified as 1) traumatic brain injury, 2) subarachnoid hemorrhage, 3) intracerebral hemorrhage, 4) cerebral infarction, and 5) other. A large bone flap was removed and the dura mater was opened in a stellate fashion. Duraplasty was not performed—that is, the dura was not sutured, and a dural substitute was neither sutured in nor layed on. The dura and exposed brain tissue were covered with hemostyptic material (Surgicel). Surgical time and complications of this procedure including follow-up (> 6 months) were recorded. After 3–6 months cranioplasty was performed, and, again, surgical time and any complications were recorded.


Rapid closure decompressive craniectomy was feasible in all cases. Complications included superficial wound healing disturbance (3.5% of procedures), abscess (2.6%) and CSF fistula (0.6%); the mean surgical time (± SD) was 69 ± 20 minutes. Cranioplasty was performed in 196 cases; the mean interval (± SD) from craniectomy to cranioplasty was 118 ± 40 days. Complications of cranioplasty included epidural hematoma (4.1%), abscess (2.6%), wound healing disturbance (6.1%), and CSF fistula (1%).

Compared with the results reported in the literature for decompressive craniectomy with duraplasty followed by cranioplasty, there were no significant differences in the frequency of complications. However, surgical time for RCDC was significantly shorter (69 ± 20 vs 129 ± 43 minutes, p < 0.0001).


The present analysis of the largest series reported to date reveals that the rapid closure technique is feasible and safe in decompressive craniectomy. The surgical time is significantly shorter without increased complication rates or additional complications. Cranioplasty after a RCDC procedure was also feasible, fast, safe and not impaired by the RCDC technique.

Full access

Erdem Güresir, Patrick Schuss, Hartmut Vatter, Andreas Raabe, Volker Seifert, and Jürgen Beck


The aim of this study was to analyze decompressive craniectomy (DC) in the setting of subarachnoid hemorrhage (SAH) with bleeding, infarction, or brain swelling as the underlying pathology in a large cohort of consecutive patients.


Decompressive craniectomy was performed in 79 of 939 patients with SAH. Patients were stratified according to the indication for DC: 1) primary brain swelling without or 2) with additional intracerebral hematoma, 3) secondary brain swelling without rebleeding or infarcts, and 4) secondary brain swelling with infarcts or 5) with rebleeding. Outcome was assessed according to the modified Rankin Scale (mRS) at 6 months (mRS Score 0–3 favorable vs 4–6 unfavorable).


Overall, 61 (77.2%) of 79 patients who did and 292 (34%) of the 860 patients who did not undergo DC had a poor clinical grade on admission (World Federation of Neurosurgical Societies Grade IV–V, p < 0.0001). A favorable outcome was attained in 21 (26.6%) of 79 patients who had undergone DC. In a comparison of favorable outcomes in patients with primary (28.0%) or secondary DC (25.5%), no difference could be found (p = 0.8). Subgroup analysis with respect to the underlying indication for DC (brain swelling vs bleeding vs infarction) revealed no difference in the rate of favorable outcomes. On multivariate analysis, acute hydrocephalus (p = 0.009) and clinical signs of herniation (p = 0.02) were significantly associated with an unfavorable outcome.


Based on the data in this study the authors concluded that primary as well as secondary craniectomy might be warranted, regardless of the underlying etiology (hemorrhage, infarction, or brain swelling) and admission clinical grade of the patient. The time from the onset of intractable intracranial pressure to DC seems to be crucial for a favorable outcome, even when a DC is performed late in the disease course after SAH.