Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Michael W. McDermott x
  • Refine by Access: all x
  • By Author: Villanueva-Meyer, Javier E. x
Clear All Modify Search
Restricted access

Stephen T. Magill, Minh P. Nguyen, Manish K. Aghi, Philip V. Theodosopoulos, Javier E. Villanueva-Meyer, and Michael W. McDermott

OBJECTIVE

Convexity meningiomas are commonly managed with resection. Motor outcomes and predictors of new deficits after surgery are poorly studied. The objective of this study was to determine whether postoperative diffusion-weighted imaging (DWI) was associated with neurological deficits after convexity meningioma resection and to identify the risk factors for postoperative DWI restriction.

METHODS

A retrospective review of patients who had undergone convexity meningioma resection from 2014 to 2018 was performed. Univariate and multivariate logistic regressions were performed to identify variables associated with postoperative neurological deficits and a DWI signal. The amount of postoperative DWI signal was measured and was correlated with low apparent diffusion coefficient maps to confirm ischemic injury.

RESULTS

The authors identified 122 patients who had undergone a total of 125 operations for convexity meningiomas. The median age at surgery was 57 years, and 70% of the patients were female. The median follow-up was 26 months. The WHO grade was I in 62% of cases, II in 36%, and III in 2%. The most common preoperative deficits were seizures (24%), extremity weakness/paralysis (16%), cognitive/language/memory impairment (16%), and focal neurological deficit (16%). Following resection, 89% of cases had no residual deficit. Postoperative DWI showed punctate or no diffusion restriction in 78% of cases and restriction > 1 cm in 22% of cases. An immediate postoperative neurological deficit was present in 14 patients (11%), but only 8 patients (7%) had a deficit at 3 months postoperatively. Univariate analysis identified DWI signal > 1 cm (p < 0.0001), tumor diameter (p < 0.0001), preoperative motor deficit (p = 0.0043), older age (p = 0.0113), and preoperative embolization (p = 0.0171) as risk factors for an immediate postoperative deficit, whereas DWI signal > 1 cm (p < 0.0001), tumor size (p < 0.0001), and older age (p = 0.0181) were risk factors for deficits lasting more than 3 months postoperatively. Multivariate analysis revealed a DWI signal > 1 cm to be the only significant risk factor for deficits at 3 months postoperatively (OR 32.42, 95% CI 3.3–320.1, p = 0.0002). Further, estimated blood loss (OR 1.4 per 100 ml increase, 95% CI 1.1–1.7, p < 0.0001), older age (OR 1.1 per year older, 95% CI 1.0–1.1, p = 0.0009), middle third location in the sagittal plane (OR 16.9, 95% CI 1.3–216.9, p = 0.0026), and preoperative peritumoral edema (OR 4.6, 95% CI 1.2–17.7, p = 0.0249) were significantly associated with a postoperative DWI signal > 1 cm.

CONCLUSIONS

A DWI signal > 1 cm is significantly associated with postoperative neurological deficits, both immediate and long-lasting. Greater estimated blood loss, older age, tumor location over the motor strip, and preoperative peritumoral edema increase the risk of having a postoperative DWI signal > 1 cm, reflective of perilesional ischemia. Most immediate postoperative deficits will improve over time. These data are valuable when preoperatively communicating with patients about the risks of surgery and when postoperatively discussing prognosis after a deficit occurs.

Free access

Cecilia L. Dalle Ore, Stephen T. Magill, Roberto Rodriguez Rubio, Maryam N. Shahin, Manish K. Aghi, Philip V. Theodosopoulos, Javier E. Villanueva-Meyer, Robert C. Kersten, Oluwatobi O. Idowu, M. Reza Vagefi, and Michael W. McDermott

OBJECTIVE

Hyperostosing sphenoid wing meningiomas cause bony hyperostosis that may extend into the orbit, resulting in proptosis, restriction of extraocular movements, and/or compressive optic neuropathy. The extent of bony removal necessary and the optimal reconstruction strategy to prevent enophthalmos is debated. Herein, the authors present their surgical outcomes and reconstruction results.

METHODS

This is a retrospective review of 54 consecutive patients undergoing resection of sphenoid wing meningiomas associated with bony hyperostosis. The majority of cases were operated on by the senior author. Extent of tumor resection, volumetric bone resection, radiographic exophthalmos index, complications, and recurrence were analyzed.

RESULTS

The median age of the cohort was 52.1 years, with women comprising 83% of patients. Proptosis was a presenting symptom in 74%, and 52% had decreased visual acuity. The WHO grade was I (85%) or II (15%). The median follow-up was 2.6 years. On volumetric analysis, a median 86% of hyperostotic bone was resected. Gross-total resection of the intracranial tumor was achieved in 43% and the orbital tumor in 27%, and of all intracranial and orbital components in 20%. Orbital reconstruction was performed in 96% of patients. Postoperative vision was stable or improved in 98% of patients and diplopia improved in 89%. Postoperative complications occurred in 44% of patients, and 26% of patients underwent additional surgery for complication management. The most frequent complications were medical complications and extraocular movement deficits. The median preoperative exophthalmos index was 1.26, which improved to 1.12 immediately postoperatively and to 1.09 at the 6-month follow-up (p < 0.001). Postoperatively, 18 patients (33%) underwent adjuvant radiotherapy after subtotal resection. Tumors recurred/progressed in 12 patients (22%).

CONCLUSIONS

Resection of hyperostosing sphenoid wing meningiomas, particularly achieving gross-total resection of hyperostotic bone with a good aesthetic result, is challenging and associated with notable medical and ocular morbidity. Recurrence rates in this series are higher than previously reported. Nevertheless, the authors were able to attain improvement in proptosis and visual symptoms in the majority of patients by using a multidisciplinary approach.

Restricted access

Cecilia L. Dalle Ore, Stephen T. Magill, Adam J. Yen, Maryam N. Shahin, David S. Lee, Calixto-Hope G. Lucas, William C. Chen, Jennifer A. Viner, Manish K. Aghi, Philip V. Theodosopoulos, David R. Raleigh, Javier E. Villanueva-Meyer, and Michael W. McDermott

OBJECTIVE

Extracranial meningioma metastases are uncommon, occurring in less than 1% of patients diagnosed with meningioma. Due to the rarity of meningioma metastases, patients are not routinely screened for distant disease. In this series, we report their experience with meningioma metastases and results of screening for metastases in select patients with recurrent meningiomas.

METHODS

All patients undergoing resection or stereotactic radiosurgery for primary or recurrent meningioma from 2009 to 2017 at a single center were retrospectively reviewed to identify patients who were diagnosed with or underwent imaging to evaluate for systemic metastases. Imaging to evaluate for metastases was performed with CT scanning of the chest, abdomen, and pelvis or whole-body PET/CT using either FDG or 68Ga-DOTA-octreotate (DOTATATE) tracers in 28 patients. Indications for imaging were symptomatic lesions concerning for metastasis or asymptomatic screening in patients with greater than 2 recurrences being evaluated for additional treatment.

RESULTS

Of 1193 patients treated for meningioma, 922 (77.3%) patients had confirmed or presumed WHO grade I tumors, 236 (19.8%) had grade II tumors, and 35 (2.9%) had grade III tumors. Mean follow-up was 4.3 years. A total of 207 patients experienced recurrences (17.4%), with a mean of 1.8 recurrences. Imaging for metastases was performed in 28 patients; 1 metastasis was grade I (3.6%), 16 were grade II (57.1%), and 11 were grade III (39.3%). Five patients (17.9%) underwent imaging because of symptomatic lesions. Of the 28 patients screened, 27 patients had prior recurrent meningioma (96.4%), with a median of 3 recurrences. On imaging, 10 patients had extracranial lesions suspicious for metastasis (35.7%). At biopsy, 8 were meningioma metastases, 1 was a nonmeningioma malignancy, and 1 patient was lost to follow-up prior to biopsy. Biopsy-confirmed metastases occurred in the liver (5), lung (3), mediastinum (1), and bone (1). The observed incidence of metastases was 0.67% (n = 8). Incidence increased to 2% of WHO grade II and 8.6% of grade III meningiomas. Using the proposed indications for screening, the number needed to screen to identify one patient with biopsy-confirmed malignancy was 3.83.

CONCLUSIONS

Systemic imaging of patients with multiply recurrent meningioma or symptoms concerning for metastasis may identify extracranial metastases in a significant proportion of patients and can inform decision making for additional treatments.