Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Darryl Lau x
  • Refine by Access: all x
  • By Author: Smith, Justin S. x
Clear All Modify Search
Restricted access

Darryl Lau, Cecilia L. Dalle Ore, Patrick Reid, Michael M. Safaee, Vedat Deviren, Justin S. Smith, Christopher I. Shaffrey, and Christopher P. Ames

OBJECTIVE

The benefits and utility of routine neuromonitoring with motor and somatosensory evoked potentials during lumbar spine surgery remain unclear. This study assesses measures of performance and utility of transcranial motor evoked potentials (MEPs) during lumbar pedicle subtraction osteotomy (PSO).

METHODS

This is a retrospective study of a single-surgeon cohort of consecutive adult spinal deformity (ASD) patients who underwent lumbar PSO from 2006 to 2016. A blinded neurophysiologist reviewed individual cases for MEP changes. Multivariate analysis was performed to determine whether changes correlated with neurological deficits. Measures of performance were calculated.

RESULTS

A total of 242 lumbar PSO cases were included. MEP changes occurred in 38 (15.7%) cases; the changes were transient in 21 cases (55.3%) and permanent in 17 (44.7%). Of the patients with permanent changes, 9 (52.9%) had no recovery and 8 (47.1%) had partial recovery of MEP signals. Changes occurred at a mean time of 8.8 minutes following PSO closure (range: during closure to 55 minutes after closure). The mean percentage of MEP signal loss was 72.9%. The overall complication rate was 25.2%, and the incidence of new neurological deficits was 4.1%. On multivariate analysis, MEP signal loss of at least 50% was not associated with complication (p = 0.495) or able to predict postoperative neurological deficits (p = 0.429). Of the 38 cases in which MEP changes were observed, the observation represented a true-positive finding in only 3 cases. Postoperative neurological deficits without MEP changes occurred in 7 cases. Calculated measures of performance were as follows: sensitivity 30.0%, specificity 84.9%, positive predictive value 7.9%, and negative predictive value 96.6%. Regarding the specific characteristics of the MEP changes, only a signal loss of 80% or greater was significantly associated with a higher rate of neurological deficit (23.0% vs 0.0% for loss of less than 80%, p = 0.021); changes of less than 80% were not associated with postoperative deficits.

CONCLUSIONS

Neuromonitoring has a low positive predictive value and low sensitivity for detecting new neurological deficits. Even when neuromonitoring is unchanged, patients can still have new neurological deficits. The utility of transcranial MEP monitoring for lumbar PSO remains unclear but there may be advantages to its use.

Free access

Alex Soroceanu, Justin S. Smith, Darryl Lau, Michael P. Kelly, Peter G. Passias, Themistocles S. Protopsaltis, Jeffrey L. Gum, Virginie Lafage, Han-Jo Kim, Justin K. Scheer, Munish Gupta, Gregory M. Mundis Jr., Eric O. Klineberg, Douglas Burton, Shay Bess, Christopher P. Ames, and the International Spine Study Group

OBJECTIVE

It is being increasingly recognized that adult cervical deformity (ACD) is correlated with significant pain, myelopathy, and disability, and that patients who undergo deformity correction gain significant benefit. However, there are no defined thresholds of minimum clinically important difference (MCID) in Neck Disability Index (NDI) and modified Japanese Orthopaedic Association (mJOA) scores.

METHODS

Patients of interest were consecutive patients with ACD who underwent cervical deformity correction. ACD was defined as C2–7 sagittal Cobb angle ≥ 10° (kyphosis), C2–7 coronal Cobb angle ≥ 10° (cervical scoliosis), C2–7 sagittal vertical axis ≥ 4 cm, and/or chin-brow vertical angle ≥ 25°. Data were obtained from a consecutive cohort of patients from a multiinstitutional prospective database maintained across 13 sites. Distribution-based MCID, anchor-based MCID, and minimally detectable measurement difference (MDMD) were calculated.

RESULTS

A total of 73 patients met inclusion criteria and had sufficient 1-year follow-up. In the cohort, 42 patients (57.5%) were female. The mean age at the time of surgery was 62.23 years, and average body mass index was 29.28. The mean preoperative NDI was 46.49 and mJOA was 13.17. There was significant improvement in NDI at 1 year (46.49 vs 37.04; p = 0.0001). There was no significant difference in preoperative and 1-year mJOA (13.17 vs 13.7; p = 0.12). Using multiple techniques to yield MCID thresholds specific to the ACD population, the authors obtained values of 5.42 to 7.48 for the NDI, and 1.00 to 1.39 for the mJOA. The MDMD was 6.4 for the NDI, and 1.8 for the mJOA. Therefore, based on their results, the authors recommend using an MCID threshold of 1.8 for the mJOA, and 7.0 for the NDI in patients with ACD.

CONCLUSIONS

The ACD-specific MCID thresholds for NDI and mJOA are similar to the reported MCID following surgery for degenerative cervical disease. Additional studies are needed to verify these findings. Nonetheless, the findings here will be useful for future studies evaluating the success of surgery for patients with ACD undergoing deformity correction.