Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Amy K. Bruzek x
  • Refine by Access: all x
  • By Author: Garton, Hugh J. L. x
  • By Author: Nan, Bin x
Clear All Modify Search
Full access

Morphometric changes at the craniocervical junction during childhood

Jayapalli Rajiv Bapuraj, Amy K. Bruzek, Jamaal K. Tarpeh, Lindsey Pelissier, Hugh J. L. Garton, Richard C. E. Anderson, Bin Nan, Tianwen Ma, and Cormac O. Maher


Current understanding of how the pediatric craniocervical junction develops remains incomplete. Measurements of anatomical relationships at the craniocervical junction can influence clinical and surgical decision-making. The purpose of this analysis was to quantitatively define clinically relevant craniocervical junction measurements in a population of children with CT scans that show normal anatomy.


A total of 1458 eligible patients were identified from children between 1 and 18 years of age who underwent cervical spine CT scanning at a single institution. Patients were separated by both sex and age in years into 34 groups. Following this, patients within each group were randomly selected for inclusion until a target of 15 patients in each group had been reached. Each patient underwent measurement of the occipital condyle–C1 interval (CCI), pB–C2, atlantodental interval (ADI), basion-dens interval (BDI), basion-opisthion diameter (BOD), basion-axial interval (BAI), dens angulation, and canal diameter at C1. Mean values were calculated in each group. Each measurement was performed by two teams and compared for intraclass correlation coefficient (ICC).


The data showed that CCI, ADI, BDI, and dens angulation decrease in magnitude throughout childhood, while pB–C2, PADI, BAI, and BOD increase throughout childhood, with an ICC of fair to good (range 0.413–0.912). Notably, CCI decreases continuously on coronal CT scans, whereas on parasagittal CT scans, CCI does not decrease until after age 9, when it shows a continuous decline similar to measurements on coronal CT scans.


These morphometric analyses establish parameters for normal pediatric craniocervical spine growth for each year of life up to 18 years. The data should be considered when evaluating children for potential surgical intervention.