Search Results

You are looking at 1 - 10 of 31 items for

  • Author or Editor: John D. Pickard x
  • Refine by Access: all x
  • By Author: Czosnyka, Marek x
Clear All Modify Search
Restricted access

Zofia Czosnyka, John D. Pickard, and Marek Czosnyka

Object

Independent testing of hydrocephalus shunts provides information about the quality of CSF drainage after shunt implantation. Moreover, hydrodynamic parameters of a valve assessed in the laboratory create a comparative pattern for testing of shunt performance in vivo. This study sought to assess the hydrodynamic parameters of the Certas valve, a new model of a hydrocephalus shunt.

Methods

The Certas valve is an adjustable ball-on-spring hydrocephalus valve. It can be adjusted magnetically in vivo in 7 steps, equally distributed within the therapeutic limit for hydrocephalus, and the eighth step at high pressures intended to block CSF drainage. The magnetically adjustable rotor is designed to prevent accidental readjustment of the valve in a magnetic field, including clinical MRI.

Results

The pressure-flow performance curves, as well as the operating, opening, and closing pressures, were stable, fell within the specified limits, and changed according to the adjusted performance levels. The valve at settings 1–7 demonstrated low hydrodynamic resistance of 1.4 mm Hg/ml/min, increasing to 5.1 mm Hg/ml/min after connection of a distal drain provided by the manufacturer. At performance Level 8 the hydrodynamic resistance was greater than 20 mm Hg/ml/min. External programming of the valve proved to be easy and reliable. The valve is safe in 3-T MRI and the performance level of the valve is unlikely to be changed. However, with the valve implanted, distortion of the image is substantial. Integration of the valve with the SiphonGuard limits the drainage rate.

Conclusions

In the laboratory the Certas valve appears to be a reliable differential-pressure adjustable valve. Laboratory evaluation should be supplemented by results of a clinical audit in the future.

Restricted access

Marek Czosnyka, Hugh K. Richards, Helen E. Whitehouse, and John D. Pickard

✓ Clinical studies with transcranial Doppler suggest that the pulsatility of the flow velocity (FV) waveform increases when the distal cerebrovascular resistance (CVR) increases. To clarify this relationship, the authors studied animal models in which the resistance may be decreased in a controlled manner by an increase in arterial CO2 tension, or by a decrease in cerebral perfusion pressure (CPP) in autoregulating animals. Twelve New Zealand white rabbits were anesthetized, paralyzed, and ventilated. Transcranial Doppler basilar artery FV, laser Doppler cortical blood flow, arterial pressure, intracranial pressure, and end-tidal CO2 concentration were measured continuously. Cerebrovascular resistance (CPP divided by laser Doppler cortical flux) and Gosling Pulsatility Index (PI, defined as an FV pulse amplitude divided by a timed average FV) were calculated as time-dependent variables for each animal.

Four groups of animals undergoing controlled manipulations of CVR were analyzed. In Group I, arterial CO2 concentration was changed gradually from hypocapnia to hypercapnia. In Group II, gradual hemorrhagic hypotension was used to reduce CPP. In Group III, the short-acting ganglion blocking drug trimetaphan was injected intravenously to induce transient hypotension. Intracranial hypertension was produced by subarachnoid saline infusion in Group IV. During the hypercapnic challenge the correlation between the cortical resistance and Doppler flow pulsatility was positive (r = 0.77, p < 0.001). In all three groups in which cerebral perfusion pressure was reduced a negative correlation between pulsatility index and cerebrovascular resistance was found (r = −20.84, p < 0.001). The authors conclude that PI cannot be interpreted simply as an index of CVR in all circumstances.

Restricted access

Piotr Smielewski, Marek Czosnyka, Peter Kirkpatrick, and John D. Pickard

✓ The transient hyperemic response test has been shown to provide an index of cerebral autoregulation in healthy individuals and in patients who have suffered a subarachnoid hemorrhage. In this study, the test was applied to patients who had received a severe head injury, and the value of the test was assessed by comparing its result with the individual's clinical condition (Glasgow Coma Scale [GCS] score), cerebral perfusion pressure (CPP), transcranial Doppler wave form—derived index for cerebral autoregulation (relationship between the CPP and the middle cerebral artery flow velocity), and outcome (Glasgow Outcome Scale [GOS] score).

Forty-seven patients, aged 16 to 63 years, with head injuries were included in the study. Signals of intracranial pressure, arterial blood pressure, flow velocity, and cortical microcirculatory flux were digitized and recorded for a period of 30 minutes using special computer software. Two carotid compressions were performed at the beginning of each recording. The transient hyperemic response ratio (THRR: the ratio of the hyperemic flow velocity recorded after carotid release and the precompression baseline flow velocity) was calculated, as was the correlation coefficient Sx used to describe the relationship between slow fluctuations in the systolic flow velocity and CPP throughout the period of recording.

No significant changes in CPP were found during compression. There was a significant correlation between the THRR and the Sx (r = 0.49, p < 0.0001). The hyperemic response proved to be lower in patients who exhibited a poor clinical grade at presentation (GCS scores < 6, p = 0.01) and lower in patients achieving a poor outcome (GOS scores of 3, 4, and 5, p = 0.003). Loss of postcompression hyperemia occurred when the CPP fell below 50 mm Hg.

The carotid compression test provides a simple index of cerebral autoregulation that is relevant to the clinical condition and outcome of the severely head injured patient.

Restricted access

Marek Czosnyka, Piotr Smielewski, Stefan Piechnik, Luzius A. Steiner, and John D. Pickard

Object. The goal of this study was to examine the relationship between cerebral autoregulation, intracranial pressure (ICP), arterial blood pressure (ABP), and cerebral perfusion pressure (CPP) after head injury by using transcranial Doppler (TCD) ultrasonography.

Methods. Using ICP monitoring and TCD ultrasonography, the authors previously investigated whether the response of flow velocity (FV) in the middle cerebral artery to spontaneous variations in ABP or CPP provides reliable information about cerebral autoregulatory reserve. In the present study, this method was validated in 187 head-injured patients who were sedated and receiving mechanical ventilation. Waveforms of ICP, ABP, and FV were recorded over intervals lasting 20 to 120 minutes. Time-averaged mean FV and CPP were determined. The correlation coefficient index between FV and CPP (the mean index of autoregulation [Mx]) was calculated over 4-minute epochs and averaged for each investigation.

The distribution of averaged mean FV values converged with the shape of the autoregulatory curve, indicating lower (CPP < 55 mm Hg) and upper (CPP > 105 mm Hg) thresholds of autoregulation. The relationship between the Mx and either the CPP or ABP was depicted as a U-shaped curve. Autoregulation was disturbed in the presence of intracranial hypertension (ICP ≥ 25 mm Hg) and when mean ABP was too low (ABP < 75 mm Hg) or too high (ABP > 125 mm Hg). Disturbed autoregulation (p < 0.005) and higher ICP (p < 0.005) occurred more often in patients with unfavorable outcomes than in those with favorable outcomes.

Conclusions. Autoregulation not only is impaired when associated with a high ICP or low ABP, but it can also be disturbed by too high a CPP. The Mx can be used to guide intensive care therapy when CPP-oriented protocols are used.

Restricted access

Aswin Chari, Marek Czosnyka, Hugh K. Richards, John D. Pickard, and Zofia H. Czosnyka

Object

The Cambridge Shunt Evaluation Laboratory was established 20 years ago. This paper summarizes the findings of that laboratory for the clinician.

Methods

Twenty-six models of valves have been tested long-term in the shunt laboratory according to the expanded International Organization for Standardization 7197 standard protocol.

Results

The majority of the valves had a nonphysiologically low hydrodynamic resistance (from 1.5 to 3 mm Hg/[ml/min]), which may result in overdrainage related to posture and during nocturnal cerebral vasogenic waves. A long distal catheter increases the resistance of these valves by 100%–200%. Drainage through valves without a siphon-preventing mechanism is very sensitive to body posture, which may result in grossly negative intracranial pressure. Siphon-preventing accessories offer a reasonable resistance to negative outlet pressure; however, accessories with membrane devices may be blocked by raised subcutaneous pressure. In adjustable valves, the settings may be changed by external magnetic fields of intensity above 40 mT (exceptions: ProGAV, Polaris, and Certas). Most of the magnetically adjustable valves produce large distortions on MRI studies.

Conclusions

The behavior of a valve revealed during testing is of relevance to the surgeon and may not be adequately described in the manufacturer's product information. The results of shunt testing are helpful in many circumstances, such as the initial choice of shunt and the evaluation of the shunt when its dysfunction is suspected.

Restricted access

Marek Czosnyka, Hugh K. Richards, Zofia Czosnyka, Stefan Piechnik, and John D. Pickard

Object. The aim of the study was to assess how cerebrospinal fluid (CSF) pressure—volume compensation depends on cerebrovascular tone.

Methods. In 26 New Zealand White rabbits, intracranial pressure (ICP), arterial blood pressure, and basilar artery blood flow velocity were measured continuously. Saline was infused into the cranial subarachnoid space to assess CSF compensatory parameters: the resistance to CSF outflow, the elastance coefficient, and the amplitude of the ICP pulsatile waveform. Infusions were repeated on two different levels of CO2 concentration in the arterial blood (PaCO2), at normotension and hypotension, and after the death of the animal.

An increase in PaCO2 from a mean of 27 to 48 mm Hg was accompanied by an 18% increase in the resistance to CSF outflow (p < 0.005) and a 64% increase (p < 0.05) in the elastance coefficient. A decrease in arterial blood pressure from a mean of 100 to 51 mm Hg caused a 25% decrease in CSF outflow resistance (p < 0.01) but did not affect the elastance coefficient. Postmortem, a 23% decrease in the CSF outflow resistance was associated with a 102% decrease in the elastance coefficient.

Conclusions. Cerebrovascular parameters have a limited but significant impact on CSF infusion studies. The vascular component of ICP may be identified as a significant factor contributing to this phenomenon. During infusion studies, physiological parameters influencing vascular conditions should be maintained as stable as possible.

Restricted access

Marek Czosnyka, Zofia H. Czosnyka, Peter C. Whitfield, Tim Donovan, and John D. Pickard

Object. The dynamics of both drainage and storage capacity become altered during the sequential pathological processes that lead to hydrocephalus. Cerebrospinal fluid (CSF) formation and drainage rate have been reported to be age dependent. The aim of this study was to investigate whether CSF compensatory parameters are dependent on age in patients who have symptoms of hydrocephalus and apparently normal intracranial pressure (ICP).

Methods. Forty-six patients who presented with ventriculomegaly, the clinical symptoms of hydrocephalus, and normal ICPs underwent a computerized CSF infusion test. Parameters used to describe CSF compensation were calculated and correlated with the age of each patient.

The mean ICPs were found to be independent of the age of the patient. Resistance to CSF outflow (Rcsf), however, demonstrated a nonlinear increase with advancing age (r = −0.57; p < 0.0001) and was associated with a decrease in the CSF production rate, which also occurred with increasing age (r = 0.49; p < 0.002). Both the pulse amplitude of the ICP waveform and the slope of the amplitude—ICP regression line increased significantly with advancing age (r = 0.39; p < 0.01 and r = 0.43, p < 0.004, respectively). The nonlinear increase in the elastance coefficient indicated increasing brain stiffness, which acompanies older ages (r = −0.31; p < 0.04).

Conclusions. In a study of patients with symptoms of hydrocephalus, but normal ICPs, the increase in Rcsf and decrease in CSF production were most pronounced in patients who were older than 56 years of age. This relationship was more significant than previously suggested.

Full access

Ming-Yuan Tseng, Marek Czosnyka, Hugh Richards, John D. Pickard, and Peter J. Kirkpatrick

Object

The authors previously have demonstrated that acute treatment with pravastatin after aneurysmal subarachnoid hemorrhage (SAH) can ameliorate vasospasm-related delayed ischemic neurological deficits (DINDs). In the current study, they test the hypothesis that these effects are associated with improvement in indices describing autoregulation of cerebral blood flow.

Methods

In this double-blind study, 80 patients between the ages of 18 and 84 years who had aneurysmal SAH were randomized equally to receive either 40 mg of oral pravastatin or placebo once daily for up to 14 days (medication was started 1.8 ± 1.3 days after ictus). Autoregulation was measured using a daily transient hyperemic response test (THRT) on transcranial Doppler ultrasonography (800 measurements in 80 patients), and data were compared between the pravastatin and placebo groups and between patients with or without vasospasm, DINDs, or unfavorable outcome. Measurement of autoregulation also was performed using the pressure-reactivity index, a moving correlation coefficient between mean arterial and intracranial pressures (Days 0–5, 132 measurements in 32 patients).

There was no difference in baseline autoregulation indices between the trial groups. The members of the pravastatin group not only had a shorter duration of impaired autoregulation but also had stronger transient hyperemic response ratios (THRRs) bilaterally. A negative correlation existed between the mean flow velocity in the middle cerebral artery and THRRs. Onset of DINDs occurred when bilateral autoregulation failed. On Days 3, 4, and 5, the pressure-reactivity index correlated significantly with ipsilateral impaired autoregulation.

Conclusions

The neuroprotective effects of acute treatment with pravastatin following aneurysmal SAH are associated with enhancement of autoregulation. A routine and daily assessment of cerebral autoregulation by using the THRT may help identify patients at high risk of DINDs.

Restricted access

Marek Czosnyka, Basil F. Matta, Piotr Smielewski, Peter J. Kirkpatrick, and John D. Pickard

Object. The authors studied the reliability of a new method for noninvasive assessment of cerebral perfusion pressure (CPP) in head-injured patients in which mean arterial blood pressure (ABP) and transcranial Doppler middle cerebral artery mean and diastolic flow velocities are measured.

Methods. Cerebral perfusion pressure was estimated (eCPP) over periods of continuous monitoring (20 minutes—2 hours, 421 daily examinations) in 96 head-injured patients (Glasgow Coma Scale score < 13) who were admitted to the intensive care unit. All patients were sedated, paralyzed, and ventilated. The eCPP and the measured CPP (ABP minus intracranial pressure, measured using an intraparenchymal microsensor) were compared.

The correlation between eCPP and measured CPP was r = 0.73; p < 10−6. In 71% of the examinations, the estimation error was less than 10 mm Hg and in 84% of the examinations, the error was less than 15 mm Hg. The method had a high positive predictive power (94%) for detecting low CPP (< 60 mm Hg). The eCPP also accurately reflected changes in measured CPP over time (r > 0.8; p < 0.001) in situations such as plateau and B waves of intracranial pressure, arterial hypotension, and refractory intracranial hypertension. A good correlation was found between the average measured CPP and eCPP when day-by-day variability was assessed in a group of 41 patients (r = 0.71).

Conclusions. Noninvasive estimation of CPP by using transcranial Doppler ultrasonography may be of value in situations in which monitoring relative changes in CPP is required without invasive measurement of intracranial pressure.

Restricted access

Peter J. Kirkpatrick, Piotr Smielewski, Marek Czosnyka, David K. Menon, and John D. Pickard

✓ A multimodality recording system was used in 14 ventilated patients with closed head injury to assess the potential use of near-infrared spectroscopy (NIRS) in the neurointensive care unit. Signals of intracranial pressure, cerebral perfusion pressure, peripheral oxygen saturation, jugular venous saturation, and NIRS-derived changes in the chromophores of oxy- and deoxyhemoglobin were digitized and recorded. After a review of 886 hours of continuous monitoring, 376 hours were considered free from artifact and were entered for final analysis. In nine of the patients 38 events were recorded that demonstrated clear changes in cerebral perfusion pressure accompanied by hemodynamic changes in middle cerebral artery flow velocity (transcranial Doppler) and cortical perfusion (laser Doppler flowmetry). Near-infrared spectroscopy showed correlated changes in 37 events (97%) whereas jugular venous saturation monitoring registered only 20 (53%). There was associated peripheral oxygen desaturation in eight cases (21%), intracranial hypertension in 10 (26%), and cerebral hyperemia in eight (21%). The remaining 12 events (32%) appeared to be complex changes of uncertain origin. Iatrogenic factors were identified as causative in 14 cases (37%). The potential application of NIRS in adults and the importance of using multiple parameter recording systems in the interpretation of cerebral events are discussed.