REFERENCES


A SIMPLIFIED APPARATUS FOR CONSTANT VENTRICULAR DRAINAGE

Edgar A. Bering, Jr., M.D.

Department of Neurosurgery, The Children’s Medical Center, and The Peter Bent Brigham Hospital, Boston, Massachusetts

(Received for publication November 8, 1930)

Several techniques for effecting constant ventricular drainage have been described.1,3,4,5 Any successful routine method should be easily available at all times, provide a means of measuring and controlling the intracranial pressure and the amount of ventricular fluid drained, afford maximum protection against infection and be well tolerated by the patient. An apparatus that meets these requirements has been developed by the neurosurgical services of The Peter Bent Brigham Hospital and The Children’s Hospital, Boston.

The apparatus consists of the following parts: (A) an ordinary graduated 1 liter Fenwal intravenuous bottle which is held inverted by a ring attached to the head of the patient’s bed; (B) a “J”-shaped double lumen glass tube which fits the standard Fenwal single hole rubber stopper and extends into the bottle about 22 cm.; (C) connecting rubber tube attached to the glass tube at one end and a glass adapter and standard intravenous needle at the other; (D) a 12-inch length of small-caliber polyethylene tubing,2 which is used as the ventricular catheter. All of this except the polyethylene tubing is sterilized as a unit; several units are kept available at all times.

To institute drainage, a ventricular tap is made in the usual fashion using an open-end needle fitted with a stylet. When a free flow of fluid has been obtained the polyethylene catheter is threaded into the ventricle through the needle and the needle withdrawn, leaving the catheter in place. An intravenous needle of proper size is inserted into the end of the catheter and attached to a 1 cc. syringe. When adequate flow of ventricular fluid through the catheter is assured it is anchored to the skin with stitch and a sterile dressing is applied to the head around the catheter. The needle is then removed from the syringe and attached to the tubing from the drainage bottle. The bottle is usually positioned so that the curved top of the glass tube is about 150 mm. above the formen magnum, but any desired pressure can be maintained by raising or lowering the bottle. If the rubber connecting tube is passed over a pulley at the head of the bed and a small weight attached to the bottom of the hanging loop, the patient has considerable freedom of motion without tension on the ventricular catheter. To protect against kinking and tearing, the polyethylene catheter should be reinforced with adhesive tape where it receives the intravenous needle. The system is shown diagrammatically in Fig. 1.

COMMENT

During a 9-month period from June 1949, to April 1950, this type of drainage was used on 26 patients 29 times. The diagnoses in these cases included brain tumor, brain abscess, hydrocephalus of various types, myelomeningocele with Arnold-Chiari malformation, and tuberculous meningitis. The duration of drainage, dictated by the clinical requirements of the patient, was usually 8 days or less (21
patients). However, 2 patients were on drainage for 10 days and 6 patients were on drainage for 15 to 18 days.

In 3 patients drainage was complicated by ventriculitis; the most severe case, manifest the day drainage was started, was probably the result of a gross breach of technique in instituting the drainage. The other 2 cases of ventriculitis, which did not appear until the 5th and 6th days respectively, were associated with moving the patient for special diagnostic procedures requiring the temporary removal of the patient from the drainage bottle. All of these patients responded to penicillin therapy. In 1 patient there developed a sterile pleocytosis of the cerebrospinal fluid associated with a fever of 102° F. Both the fever and the pleocytosis vanished when

![Diagram of constant ventricular drainage apparatus in use.](image)

FIG. 1. Diagram of constant ventricular drainage apparatus in use. (X) The height of the top of the tube above the ventricle determines the intracranial pressure.

the drainage was removed. Occasionally when drainage had been placed for long periods there was some maceration and inflammation of the skin around the polyethylene catheter. This cleared up quickly when the catheter was removed or shifted to another site.

Varying the level of the drainage bottle has been particularly valuable in determining whether patients no longer need external drainage. With the bottle well elevated the drainage can be effectively stopped, but easily reinstated by lowering the bottle if untoward symptoms develop.

This apparatus has been useful in administering constant intraventricular antibiotic therapy. A constant drip of the desired antibiotic was directed into one ventricle while constant drainage was maintained from the other. By proper adjustment of the bottle, the intraventricular pressure was held at a physiological level throughout the period of therapy.

The length of time a patient has been kept on drainage has been dictated by