Experimental Postoperative Cerebral Edema*

FRANK D. MANN, M.D., AND DARIO D. TRAVAINI, B.S.
Division of Neuropathology, Barrow Neurological Institute of St. Joseph's Hospital, Phoenix, Arizona

Since postoperative cerebral edema remains an important cause of morbidity and mortality in neurosurgery there is need for an experimental model that closely resembles this clinical condition. Prados et al. exposed the cerebral cortex of cats to air; edema of moderate degree, permitting closure of the dura mater, usually followed but rarely and unpredictably there was marked swelling. Luse and Harris1 reported swelling of the brain following craniotomy in the rabbit; they stated that this technique was not a suitable method for the consistent production of cerebral edema. This communication reports a method for the consistent production of a marked degree of postoperative cerebral edema together with some observations on the edema thus produced.

Material and Methods

Rats were chosen as the experimental animal in order to make more convenient observations on large numbers of animals. In agreement with the results of Prados et al., on cats and Luse and Harris on rabbits, well marked cerebral edema was found to follow craniotomy only occasionally and unpredictably. Craniotomy was performed on 113 rats in working out the following technique for consistent production of postoperative cerebral edema.

Rats weighing 150 to 200 gm. were anesthetized with sodium pentobarbital (80–60 mg. per kg. intraperitoneally). It was necessary to individualize the dosage on the basis of response to an initial relatively low dose. A small, high-speed, thin-bladed, circular saw obtained from a hobby shop was used to remove a piece of skull approximately 1 cm. square, the anterior border being the frontoparietal suture lines. The dura mater then was stripped from the area of brain beneath, avoiding the mid-sagittal sinus. A Gelfoam sponge was pressed gently but firmly over the operative area to maintain hemostasis. Thirty min. after completion of the operative procedure 0.1 ml. of epinephrine 1–1000 was injected into the gastrocnemius muscle. Rapid marked swelling of the brain followed. Swelling was usually maximal within 30 min. and often within 5–10 min. At maximal swelling the edema usually extended several mm. above the upper surface of the skull.

At the elected time the rats were sacrificed by decapitation with a cleaver. The brains were removed and fixed in 10 per cent formalin. Coronal sections were cut through the entire brain at the level of the edematous area and histologic sections were prepared and stained with hematoxylin and eosin.

Observations were made on cerebral edema produced in 92 rats by the foregoing technique. Controls were the brains of 11 rats which either died or were sacrificed immediately after the operative procedure.

Observations

All of the brains rendered edematous by this method showed unequivocal swelling of the cytoplasm of the oligodendrocytes (clear cells) as shown in Figs. 1–3. (It should be noted at this point that there is sharp division between authorities as to whether the cells affected in cerebral edema are oligodendrocytes or astrocytes. In accepting one point of view it is not implied that the issue is settled.) There was also unmistakable "loosening" of the structure of the white matter with clear spaces between the fibers in the more severely affected brains. There was some artifactual shrinkage around vessels in the control brains; hence this change was not used as a criterion of edema. Of all the various histological descriptions of cerebral edema, the above picture resembles most closely that described by Perret and Kernohan.

Histologically as well as grossly the edema was localized definitely to the area of cortex exposed by the craniotomy and it extended.

Received for publication January 28, 1963.

* This work was supported by Research Grant B-3678 from the United States Public Health Service and by a grant from the Haber Medical Foundation.
fairly deeply into the brain to the level of the corpus callosum.

Two rats were given the same dose of epinephrine as that used to produce edema but were sacrificed ½ hour later without performing craniotomy. No edema resulted.

Response of Cerebral Edema to Urea. Ten of the 22 rats in which cerebral edema was produced were treated with urea (1–4 ml. of 30 per cent urea injected intraperitoneally). In all 10 the edema disappeared with amazing speed and the brain then shrank below the level of the skull further than it had previously protruded. With the larger doses, there was marked shrinkage within 5 min. and maximal shrinkage within 30 min. It should be emphasized that this marked shrinkage with urea was localized to the previously edematous part of the brain. The adjacent brain did not shrink so the resulting gross appearance was that of a striking localized hollow below the opening of the craniotomy.

In 3 of the 10 rats, following shrinkage of the brain with urea, the skin was sutured over the craniotomy and the animals were returned to their cages. By the following day the animals were active and looked relatively normal. After 48 hours the incisions were re-opened and the brain was once more found to be very edematous. Two of the rats were treated a second time with urea and again showed a good response. The third rat, which was not treated a second time with urea, showed an extreme secondary edema. The brain of this rat was the only one of the series that histologically showed edema at a considerable distance from the area exposed by the craniotomy.

The histologic picture of the brains of the urea-treated rats was the surprising finding of this research. In all instances, these brains showed edema on histologic examination unmistakably more severe than the animals not treated with urea although the gross picture was that of extreme shrinkage (Fig. 3). Urea in the largest dosage used, without epinephrine, was administered to 2 rats that were sacrificed 30 min. later without craniot-

![Fig. 1. Control brain. Hematoxylin and eosin, X480.](image-url)