Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 17: bone growth stimulators and lumbar fusion


daniel k. resnick, m.d., tanvir f. choudhri, m.d., andrew t. dailey, m.d., michael w. groff, m.d., larry khoo, m.d., paul g. matz, m.d., praveen mummaneni, m.d., william c. watters iii, m.d., jeffrey w. wang, m.d., beverly c. walters, m.d., m.p.h., and mark n. hadley, m.d.

department of neurosurgery, university of wisconsin, madison, wisconsin; department of neurosurgery, mount sinai medical school, new york, new york; department of neurosurgery, university of washington, seattle, washington; department of neurosurgery, indiana university, indianapolis, indiana; departments of orthopedic surgery and neurosurgery, university of california at los angeles, california; department of neurosurgery, university of alabama at birmingham, alabama; department of neurosurgery, emory university, atlanta, georgia; bone and joint clinic of houston, texas; and department of neurosurgery, brown university, providence, rhode island

key words • fusion • lumbar spine • bone graft • bone growth stimulator • practice guidelines

recommendations

 treatment standards. there is insufficient evidence to recommend a treatment standard.

treatment guidelines. either dcs or ccS is recommended as an adjunct to spinal fusion to increase fusion rates in patients who are at high risk for arthrodesis failure following lumbar plf. pulsed electromagnetic field stimulation is recommended as an adjunct to increase fusion rates in similar patients treated with lumbar interbody fusion procedures.

rationale

one of the goals of a lumbar fusion is to produce a solid arthrodesis across the unstable motion segment(s). laboratory studies and human studies performed over the last 30 years have demonstrated that bone healing is associated with electrical potentials developing at the fusion site. attempts have been made to harness this electrical–biological link through the use of applied electrical fields to promote bone healing. several bone growth stimulators are now available as adjuncts to promote osseous fusion. these devices are expensive, require different es techniques, and are not universally accepted as efficacious. the purpose of this paper is to review the evidence for the efficacy of these devices as adjuncts for bone fusion following lumbar surgery.

literature search

a computerized search of the database of the national library of medicine from 1966 through may 2003 was performed using the key terms “bone stimulator and spine and human and english language,” or “electrical stimulation and spinal fusion and human,” or “electrical stimulation and pseudarthrosis and spinal fusion.” a total of 127 papers were identified. after discarding duplicates and reviewing the abstracts of each paper, eight clinical studies were identified. after discarding duplicates and reviewing the abstracts of each paper, eight clinical studies were identified. after discarding duplicates and reviewing the abstracts of each paper, eight clinical studies were identified. after discarding duplicates and reviewing the abstracts of each paper, eight clinical studies were identified. a number of review papers, technical notes, and animal studies served as supporting data. the bibliography of each paper was reviewed and other relevant studies were identified. all peer-reviewed clinical studies regarding the use of es to promote healing after lumbar spinal fusion are summarized in table 1. several reviews, metaanalyses, and chapters are referenced as background material.

abbreviations used in this paper: ccS = capacitative coupled stimulation; ct = computerized tomography; dcs = direct current stimulation; es = electrical stimulation; pemfs = pulsed electromagnetic field stimulation; plF = posterolateral fusion; Rct = randomized controlled trial.

J. Neurosurg: Spine / Volume 2 / June, 2005

737
Scientific Foundation

Electrical stimulation devices for the promotion of lumbar fusion consist of three types. Direct current stimulation involves electrodes implanted within or very close to the location of the desired fusion. Modern devices consist of a sealed electrical source that is implanted at the time of surgery. These devices may or may not be removed following the achievement of a solid arthrodesis. Capacitative coupling stimulation involves two electrodes placed on the skin over the fusion site and connected to an external battery-powered device. The batteries are changed daily, and the patient is encouraged to use the stimulator as much as possible, up to 24 hours per day. Pulsed electromagnetic field stimulation requires the stimulator as much as possible, up to 24 hours per day. For an overview of the basic principles governing the application of electrical fields and a discussion of the theoretical benefits of each type of stimulation technique, the reader is referred to several recently published reviews.6,7,8

Direct current devices were the first used for bone growth stimulation following lumbar fusion. Several randomized prospective clinical studies have been performed to evaluate the efficacy of this technique for the promotion of arthrodesis. Jenis and colleagues7 reported the results of an RCT comparing the use of DCS, PEMFS, and no stimulation. They randomized 61 patients to undergo implantation of a DCS (17), a PEMFS (22), or no stimulation device (22) following an instrumentation-augmented PLF in which autogenous iliac crest bone graft was placed. Although blinding was not possible due to the obvious presence of the device in the DCS group, independent plain radiographs and dynamic images by the operating surgeon were considered to be at high risk for nonunion. The majority of patients described in this report were considered high risk for nonunion because of previous surgery, smoking, or other factors. Fusion was assessed using plain radiographs and dynamic images by the operating surgeon. These authors did not assess functional outcome. Kucharzyk11 found that implantation of a DCS device improved fusion rates in a large historical cohort study of patients considered to be at high risk for nonunion. The author performed plain radiography as well as tomography, and in many cases CT scanning, to assess fusion. Using a four-point satisfaction survey, he found that patients with implanted stimulators had a higher clinical success rate following instrumented PLF (95% compared with 79%; p = 0.02). Both of these studies provide Class II medical evidence supporting the efficacy of DCS as a means to improve fusion rates. The Kucharzyk study also provides Class III medical evidence supporting a beneficial effect on functional outcome. Meril13 reported the beneficial effect of implanted DCS devices in a historical comparison of patients receiving stimulators and patients treated prior to the use of ES, undergoing instrumented interbody fusion procedures. Fusion status was assessed with multiplanar CT imaging. Smokers, patients treated without instrumentation, and those with L4–5 fusion derived the greatest benefit from the addition of ES. Meril did not assess functional outcomes. Tejano and colleagues18 as well as others15 have also contributed corroborating evidence in observational studies. These studies all provide Class III medical evidence supporting the role of DCS for promotion of bone healing following PLF. Therefore, there is Class II and III medical evidence indicating that implanted DCS devices increase fusion rates, particularly in high-risk patients undergoing lumbar PLF. There is conflicting Class III medical evidence regarding any effect on functional outcome.

The effect of CCS was studied by Goodwin, et al.,4 who performed a double-blinded RCT of CCS in a large group of patients (n = 337) who underwent various fusion procedures for a variety of indications. They used rigorous radiographic criteria to define fusion. Clinical success was