Dosimetric parameters associated with the long-term oncological outcomes of Gamma Knife surgery for sellar and parasellar tumors in pediatric patients

Eun Jung Lee MD1, Ji Yeoun Lee MD, PhD1,2,3, Jin-Wook Kim MD, PhD1, Ji Hoon Phi MD, PhD1,2, Yong Hwy Kim MD, PhD1,4, Seung-Ki Kim MD, PhD1,2, Hyun-Tai Chung PhD1, Kyu-Chang Wang MD, PhD5, and Dong Gyu Kim MD, PhD1
View More View Less
  • 1 Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul;
  • | 2 Division of Pediatric Neurosurgery, Department of Neurosurgery, Seoul National University Children’s Hospital, Seoul;
  • | 3 Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul;
  • | 4 Pituitary Center, Seoul National University Hospital, Seoul; and
  • | 5 Neuro-oncology Clinic, National Cancer Center, Goyang, Republic of Korea
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

OBJECTIVE

The authors aimed to investigate the dosimetric parameter and the minimally required dose associated with long-term control of sellar and parasellar tumors after Gamma Knife surgery (GKS) in children.

METHODS

A retrospective analysis was performed on pediatric patients younger than 19 years of age who were diagnosed with sellar and parasellar tumors and received GKS at the authors’ institution from 1998 to 2019. Cox proportional hazards regression analyses were used to investigate the dosimetric parameters associated with treatment outcome. The Kaplan-Meier method was used to analyze tumor control rates after GKS.

RESULTS

Overall, 37 patients with 40 sellar and parasellar tumors, including 22 craniopharyngiomas and 12 pituitary adenomas, had a mean follow-up of 85.8 months. The gross target volume was 0.05 cm3 to 15.28 cm3, and the mean marginal dose was 15.8 Gy (range 9.6–30.0 Gy). Ten patients experienced treatment failure at a mean of 28.0 ± 26.7 months. The actuarial 5- and 10-year tumor control rates were 79.0% and 69.8%, respectively. D98% was an independent predictive factor of tumor control (HR 0.846 [95% CI 0.749–0.956], p = 0.007), with a cutoff value of 11.5 Gy for the entire cohort and 10 Gy for the craniopharyngioma group. Visual deterioration occurred in 2 patients with the maximum point dose of 10.1 Gy and 10.6 Gy to the optic apparatus.

CONCLUSIONS

In pediatric patients, D98% was a reliable index of the minimum required dose for long-term control of sellar and parasellar tumors after GKS. The optimal D98% value for each tumor diagnosis needs to be elucidated in the future.

ABBREVIATIONS

CRP = craniopharyngioma; Dmax = maximum dose; Dmean = mean dose; Dmin = minimum dose; D2% = maximum dose received by 2% of the GTV; D98% = minimum dose received by 98% of the GTV; GKS = Gamma Knife surgery; GTV = gross target volume; NFPA = nonfunctioning PA; PA = pituitary adenoma; RION = radiation-induced optic neuropathy; ROC = receiver operating characteristic; SRS = stereotactic radiosurgery; TTV = treated target volume.

Supplementary Materials

    • Supplemental Table 1 (PDF 470 KB)

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Veeravagu A, Lee M, Jiang BW, Chang SD. The role of radiosurgery in the treatment of craniopharyngiomas. Neurosurg Focus. 2010;28(4):E11

    • Search Google Scholar
    • Export Citation
  • 2

    Minniti G, Osti MF, Niyazi M. Target delineation and optimal radiosurgical dose for pituitary tumors. Radiat Oncol. 2016;11(1):135.

  • 3

    Martinez-Barbera JP, Andoniadou CL. Biological behaviour of craniopharyngiomas. Neuroendocrinology. 2020;110(9-10):797804.

  • 4

    Belirgen M, Berrak SG, Ozdag H, Bozkurt SU, Eksioglu-Demiralp E, Ozek MM. Biologic tumor behavior in pilocytic astrocytomas. Childs Nerv Syst. 2012;28(3):375389.

    • Search Google Scholar
    • Export Citation
  • 5

    Heffelfinger MJ, Dahlin DC, MacCarty CS, Beabout JW. Chordomas and cartilaginous tumors at the skull base. Cancer. 1973;32(2):410420.

    • Search Google Scholar
    • Export Citation
  • 6

    Gatfield ER, Noble DJ, Barnett GC, Early NY, Hoole ACF, Kirkby NF, et al. Tumour volume and dose influence outcome after surgery and high-dose photon radiotherapy for chordoma and chondrosarcoma of the skull base and spine. Clin Oncol (R Coll Radiol). 2018;30(4):243253.

    • Search Google Scholar
    • Export Citation
  • 7

    Jagannathan J, Yen CP, Pouratian N, Laws ER, Sheehan JP. Stereotactic radiosurgery for pituitary adenomas: a comprehensive review of indications, techniques and long-term results using the Gamma Knife. J Neurooncol. 2009;92(3):345356.

    • Search Google Scholar
    • Export Citation
  • 8

    Kiehna EN, Merchant TE. Radiation therapy for pediatric craniopharyngioma. Neurosurg Focus. 2010;28(4):E10.

  • 9

    Veeravagu A, Lee M, Jiang B, Chang SD. The role of radiosurgery in the treatment of craniopharyngiomas. Neurosurg Focus. 2010;28(4):E11.

    • Search Google Scholar
    • Export Citation
  • 10

    Kotecha R, Sahgal A, Rubens M, De Salles A, Fariselli L, Pollock BE, et al. Stereotactic radiosurgery for non-functioning pituitary adenomas: meta-analysis and International Stereotactic Radiosurgery Society practice opinion. Neuro Oncol. 2020;22(3):318332.

    • Search Google Scholar
    • Export Citation
  • 11

    Krishnan S, Foote RL, Brown PD, Pollock BE, Link MJ, Garces YI. Radiosurgery for cranial base chordomas and chondrosarcomas. Neurosurgery. 2005;56(4):777784.

    • Search Google Scholar
    • Export Citation
  • 12

    Amichetti M, Amelio D, Minniti G. Radiosurgery with photons or protons for benign and malignant tumours of the skull base: a review. Radiat Oncol. 2012;7:210.

    • Search Google Scholar
    • Export Citation
  • 13

    Lee EJ, Cho YH, Yoon K, Cho B, Park ES, Kim CJ, Roh SW. Radiosurgical decompression for benign perioptic tumors causing compressive cranial neuropathies: a feasible alternative to microsurgery?. J Neurooncol. 2017;131(1):7381.

    • Search Google Scholar
    • Export Citation
  • 14

    Dho YS, Kim YH, Kim JW, Park CK, Chung HT, Kim SK, et al. Optimal strategy of gamma knife radiosurgery for craniopharyngiomas. J Neurooncol. 2018;140(1):135143.

    • Search Google Scholar
    • Export Citation
  • 15

    Jones B, Dale RG, Finst P, Khaksar SJ. Biological equivalent dose assessment of the consequences of hypofractionated radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(5):13791384.

    • Search Google Scholar
    • Export Citation
  • 16

    Lee EJ, Cho YH, Hong SH, Kim JH, Kim CJ. Is the complete resection of craniopharyngiomas in adults feasible considering both the oncologic and functional outcomes?. J Korean Neurosurg Soc. 2015;58(5):432441.

    • Search Google Scholar
    • Export Citation
  • 17

    Kim SK, Wang KC, Shin SH, Choe G, Chi JG, Cho BK. Radical excision of pediatric craniopharyngioma: recurrence pattern and prognostic factors. Childs Nerv Syst. 2001;17(9):531537.

    • Search Google Scholar
    • Export Citation
  • 18

    Kobayashi T. Long-term results of gamma knife radiosurgery for 100 consecutive cases of craniopharyngioma and a treatment strategy. Prog Neurol Surg. 2009;22:6376.

    • Search Google Scholar
    • Export Citation
  • 19

    Niranjan A, Kano H, Mathieu D, Kondziolka D, Flickinger JC, Lunsford LD. Radiosurgery for craniopharyngioma. Int J Radiat Oncol Biol Phys. 2010;78(1):6471.

    • Search Google Scholar
    • Export Citation
  • 20

    Pandey P, Ojha BK, Mahapatra AK. Pediatric pituitary adenoma: a series of 42 patients. J Clin Neurosci. 2005;12(2):124127.

  • 21

    Perry A, Graffeo CS, Marcellino C, Pollock BE, Wetjen NM, Meyer FB. Pediatric pituitary adenoma: case series, review of the literature, and a skull base treatment paradigm. J Neurol Surg B Skull Base. 2018;79(1):91114.

    • Search Google Scholar
    • Export Citation
  • 22

    Steele CA, MacFarlane IA, Blair J, Cuthbertson DJ, Didi M, Mallucci C, et al. Pituitary adenomas in childhood, adolescence and young adulthood: presentation, management, endocrine and metabolic outcomes. Eur J Endocrinol. 2010;163(4):515522.

    • Search Google Scholar
    • Export Citation
  • 23

    Kobayashi T. Long-term results of stereotactic gamma knife radiosurgery for pituitary adenomas. Specific strategies for different types of adenoma. Prog Neurol Surg. 2009;22:7795.

    • Search Google Scholar
    • Export Citation
  • 24

    Petit JH, Biller BM, Coen JJ, Swearingen B, Ancukiewicz M, Bussiere M, et al. Proton stereotactic radiosurgery in management of persistent acromegaly. Endocr Pract. 2007;13(7):726734.

    • Search Google Scholar
    • Export Citation
  • 25

    Höybye C, Grenbäck E, Rähn T, Degerblad M, Thorén M, Hulting AL. Adrenocorticotropic hormone-producing pituitary tumors: 12- to 22-year follow-up after treatment with stereotactic radiosurgery. Neurosurgery. 2001;49(2):284292.

    • Search Google Scholar
    • Export Citation
  • 26

    Grant RA, Whicker M, Lleva R, Knisely JP, Inzucchi SE, Chiang VL. Efficacy and safety of higher dose stereotactic radiosurgery for functional pituitary adenomas: a preliminary report. World Neurosurg. 2014;82(1-2):195201.

    • Search Google Scholar
    • Export Citation
  • 27

    Sheehan JP, Xu Z, Salvetti DJ, Schmitt PJ, Vance ML. Results of gamma knife surgery for Cushing’s disease. J Neurosurg. 2013;119(6):14861492.

    • Search Google Scholar
    • Export Citation
  • 28

    Castinetti F, Taieb D, Kuhn JM, Chanson P, Tamura M, Jaquet P, et al. Outcome of gamma knife radiosurgery in 82 patients with acromegaly: correlation with initial hypersecretion. J Clin Endocrinol Metab. 2005;90(8):44834488.

    • Search Google Scholar
    • Export Citation
  • 29

    Kobayashi T, Mori Y, Uchiyama Y, Kida Y, Fujitani S. Long-term results of gamma knife surgery for growth hormone-producing pituitary adenoma: is the disease difficult to cure?. J Neurosurg. 2005;102(suppl):119123.

    • Search Google Scholar
    • Export Citation
  • 30

    Ronchi CL, Attanasio R, Verrua E, Cozzi R, Ferrante E, Loli P, et al. Efficacy and tolerability of gamma knife radiosurgery in acromegaly: a 10-year follow-up study. Clin Endocrinol (Oxf). 2009;71(6):846852.

    • Search Google Scholar
    • Export Citation
  • 31

    Franzin A, Spatola G, Losa M, Picozzi P, Mortini P. Results of gamma knife radiosurgery in acromegaly. Int J Endocrinol. 2012;2012:342034.

    • Search Google Scholar
    • Export Citation
  • 32

    Lee CC, Vance ML, Xu Z, Yen CP, Schlesinger D, Dodson B, Sheehan J. Stereotactic radiosurgery for acromegaly. J Clin Endocrinol Metab. 2014;99(4):12731281.

    • Search Google Scholar
    • Export Citation
  • 33

    Wattson DA, Tanguturi SK, Spiegel DY, Niemierko A, Biller BM, Nachtigall LB, et al. Outcomes of proton therapy for patients with functional pituitary adenomas. Int J Radiat Oncol Biol Phys. 2014;90(3):532539.

    • Search Google Scholar
    • Export Citation
  • 34

    Jezková J, Hána V, Krsek M, Weiss V, Vladyka V, Liscák R, et al. Use of the Leksell gamma knife in the treatment of prolactinoma patients. Obstet Gynecol Surv. 2009;64(11):727729.

    • Search Google Scholar
    • Export Citation
  • 35

    Tanaka S, Link MJ, Brown PD, Stafford SL, Young WF Jr, Pollock BE. Gamma knife radiosurgery for patients with prolactin-secreting pituitary adenomas. World Neurosurg. 2010;74(1):147152.

    • Search Google Scholar
    • Export Citation
  • 36

    Cohen-Inbar O, Xu Z, Schlesinger D, Vance ML, Sheehan JP. Gamma Knife radiosurgery for medically and surgically refractory prolactinomas: long-term results. Pituitary. 2015;18(6):820830.

    • Search Google Scholar
    • Export Citation
  • 37

    Sheehan JP, Starke RM, Mathieu D, Young B, Sneed PK, Chiang VL, et al. Gamma Knife radiosurgery for the management of nonfunctioning pituitary adenomas: a multicenter study. J Neurosurg. 2013;119(2):446456.

    • Search Google Scholar
    • Export Citation
  • 38

    Mingione V, Yen CP, Vance ML, Steiner M, Sheehan J, Laws ER, Steiner L. Gamma surgery in the treatment of nonsecretory pituitary macroadenoma. J Neurosurg. 2006;104(6):876883.

    • Search Google Scholar
    • Export Citation
  • 39

    El-Shehaby AM, Reda WA, Tawadros SR, Abdel Karim KM. Low-dose Gamma Knife surgery for nonfunctioning pituitary adenomas. J Neurosurg. 2012;117(suppl):8488.

    • Search Google Scholar
    • Export Citation
  • 40

    Jagannathan J, Sheehan JP, Pouratian N, Laws ER, Steiner L, Vance ML. Gamma Knife surgery for Cushing’s disease. J Neurosurg. 2007;106(6):980987.

    • Search Google Scholar
    • Export Citation
  • 41

    Leber KA, Berglöff J, Pendl G. Dose-response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg. 1998;88(1):4350.

    • Search Google Scholar
    • Export Citation
  • 42

    Leavitt JA, Stafford SL, Link MJ, Pollock BE. Long-term evaluation of radiation-induced optic neuropathy after single-fraction stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2013;87(3):524527.

    • Search Google Scholar
    • Export Citation
  • 43

    Pollock BE, Link MJ, Leavitt JA, Stafford SL. Dose-volume analysis of radiation-induced optic neuropathy after single-fraction stereotactic radiosurgery. Neurosurgery. 2014;75(4):456460.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 202 202 160
Full Text Views 20 20 9
PDF Downloads 26 26 8
EPUB Downloads 0 0 0