Correlation between degree of sagittal suture fusion and surrogates of elevated intracranial pressure in sagittal craniosynostosis

Dillan F. VillavisanisDivision of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

Search for other papers by Dillan F. Villavisanis in
jns
Google Scholar
PubMed
Close
 MD
,
Jessica D. BlumDivision of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

Search for other papers by Jessica D. Blum in
jns
Google Scholar
PubMed
Close
 MSc
,
Carlos E. BarreroDivision of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

Search for other papers by Carlos E. Barrero in
jns
Google Scholar
PubMed
Close
 BS
,
Christopher L. KalmarDivision of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

Search for other papers by Christopher L. Kalmar in
jns
Google Scholar
PubMed
Close
 MD, MBA
,
Natalie M. PlanaDivision of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

Search for other papers by Natalie M. Plana in
jns
Google Scholar
PubMed
Close
 MD
,
Daniel Y. ChoDivision of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

Search for other papers by Daniel Y. Cho in
jns
Google Scholar
PubMed
Close
 MD, PhD
,
Sameer ShakirDivision of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

Search for other papers by Sameer Shakir in
jns
Google Scholar
PubMed
Close
 MD
,
Scott P. BartlettDivision of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

Search for other papers by Scott P. Bartlett in
jns
Google Scholar
PubMed
Close
 MD
,
Jesse A. TaylorDivision of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

Search for other papers by Jesse A. Taylor in
jns
Google Scholar
PubMed
Close
 MD
, and
Jordan W. SwansonDivision of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

Search for other papers by Jordan W. Swanson in
jns
Google Scholar
PubMed
Close
 MD, MSc
View More View Less
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

OBJECTIVE

Sagittal craniosynostosis constricts transverse skull growth, with possible neurocognitive sequelae. While the degree of sagittal suture fusion has been shown to influence the degree of dysmorphology, it is unknown if it impacts functional findings, including elevated intracranial pressure (ICP). The purpose of this study was to determine associations between the degree of sagittal suture fusion and optical coherence tomography (OCT) surrogates suggestive of increased ICP in patients with nonsyndromic sagittal craniosynostosis.

METHODS

Three-dimensional CT head images of patients with sagittal craniosynostosis were analyzed in Materialise Mimics and parietal bones were manually isolated to determine the percentage fusion of the sagittal suture. Retinal OCT was performed prior to the cranial vault procedure with analysis for thresholds that correlate with elevated ICP. The degree of sagittal suture fusion was compared with OCT retinal parameter measurements using Mann-Whitney U-tests, Spearman’s correlations, and multivariate logistic regression models controlled for age.

RESULTS

Forty patients (31 males) with nonsyndromic sagittal craniosynostosis at a mean (± SD) age of 3.4 ± 0.4 months were included in this study. OCT surrogates of elevated ICP (maximal retinal nerve fiber layer [RNFL] thickness and maximal anterior projection [MAP]) were not associated with total sagittal suture fusion (p > 0.05). Maximal RNFL thickness was positively associated with increased percentage of posterior one-half (rho = 0.410, p = 0.022) and posterior one-third (rho = 0.417, p = 0.020) sagittal suture fusion. MAP was also positively associated with increased percentage of posterior one-half (rho = 0.596, p < 0.001) and posterior one-third (rho = 0.599, p < 0.001) sagittal suture fusion. Multivariate logistic regression models revealed increased percentage of posterior one-half (p = 0.048) and posterior one-third (p = 0.039) sagittal suture fusion predicted ICP > 20 mm Hg.

CONCLUSIONS

Increased percentage fusion of the posterior sagittal suture, but not total suture, was positively associated with retinal changes indicative of increased ICP. These findings suggest suture fusion leading to increased ICP may be region specific.

ABBREVIATIONS

ICP = intracranial pressure; MAP = maximal anterior projection; OCT = optical coherence tomography; RNFL = retinal nerve fiber layer; SE = standard error.
  • Collapse
  • Expand
  • 1

    Massimi L, Caldarelli M, Tamburrini G, Paternoster G, Di Rocco C. Isolated sagittal craniosynostosis: definition, classification, and surgical indications. Childs Nerv Syst. 2012;28(9):13111317.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Bristol RE, Lekovic GP, Rekate HL. The effects of craniosynostosis on the brain with respect to intracranial pressure. Semin Pediatr Neurol. 2004;11(4):262267.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Wall SA, Thomas GP, Johnson D, et al. The preoperative incidence of raised intracranial pressure in nonsyndromic sagittal craniosynostosis is underestimated in the literature. J Neurosurg Pediatr. 2014;14(6):674681.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Alperovich M, Runyan CM, Gabrick KS, et al. Long-term neurocognitive outcomes of spring-assisted surgery versus cranial vault remodeling for sagittal synostosis. Plast Reconstr Surg. 2021;147(3):661671.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Boyajian MK, Al-Samkari H, Nguyen DC, Naidoo S, Woo AS. Partial suture fusion in nonsyndromic single-suture craniosynostosis. Cleft Palate Craniofac J. 2020;57(4):499505.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Albright AL, Byrd RP. Suture pathology in craniosynostosis. J Neurosurg. 1981;54(3):384387.

  • 7

    Beederman M, Farina EM, Reid RR. Molecular basis of cranial suture biology and disease: osteoblastic and osteoclastic perspectives. Genes Dis. 2014;1(1):120125.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Bradley JP, Levine JP, McCarthy JG, Longaker MT. Studies in cranial suture biology: regional dura mater determines in vitro cranial suture fusion. Plast Reconstr Surg. 1997;100(5):1091-1099, 1100-1102.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Heuzé Y, Boyadjiev SA, Marsh JL, et al. New insights into the relationship between suture closure and craniofacial dysmorphology in sagittal nonsyndromic craniosynostosis. J Anat. 2010;217(2):8596.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Villavisanis DF, Cho DY, Shakir S, et al. Parietal bone thickness for predicting operative transfusion and blood loss in patients undergoing spring-mediated cranioplasty for nonsyndromic sagittal craniosynostosis. J Neurosurg Pediatr. 2022;29(4):419426.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Villavisanis DF, Blum JD, Cho DY, et al. Degree of sagittal suture fusion, cephalic index, and head shape in nonsyndromic sagittal craniosynostosis. J Craniofac Surg. 2022;33(8):23882393.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Kalmar CL, Humphries LS, McGeehan B, et al. Elevated intracranial pressure in patients with craniosynostosis by optical coherence tomography. Plast Reconstr Surg. 2022;149(3):677690.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Rufai SR, Jeelani NUO, McLean RJ. Early recognition of raised intracranial pressure in craniosynostosis using optical coherence tomography. J Craniofac Surg. 2021;32(1):201205.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Driessen C, Eveleens J, Bleyen I, van Veelen ML, Joosten K, Mathijssen I. Optical coherence tomography: a quantitative tool to screen for papilledema in craniosynostosis. Childs Nerv Syst. 2014;30(6):10671073.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Burns HR, Dibbs RP, Ferry AM, Bauer DF, Maricevich RS. Optical coherence tomography and visual evoked potential testing for noninvasive intracranial pressure monitoring in craniosynostosis. Plast Reconstr Surg. 2022;149(6):1268e1269e.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Avery RA, Shah SS, Licht DJ, et al. Reference range for cerebrospinal fluid opening pressure in children. N Engl J Med. 2010;363(9):891893.

  • 17

    Hayward R, Britto J, Dunaway D, Jeelani O. Connecting raised intracranial pressure and cognitive delay in craniosynostosis: many assumptions, little evidence. J Neurosurg Pediatr. 2016;18(2):242250.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Renier D, Sainte-Rose C, Marchac D, Hirsch JF. Intracranial pressure in craniostenosis. J Neurosurg. 1982;57(3):370377.

  • 19

    Swanson JW, Aleman TS, Xu W, et al. Evaluation of optical coherence tomography to detect elevated intracranial pressure in children. JAMA Ophthalmol. 2017;135(4):320328.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Love J, Selker R, Marsman M, et al. JASP: graphical statistical software for common statistical designs. J Stat Softw. 2019;88(2):117.

  • 21

    Vijay V, Mollan SP, Mitchell JL, et al. Using optical coherence tomography as a surrogate of measurements of intracranial pressure in idiopathic intracranial hypertension. JAMA Ophthalmol. 2020;138(12):12641271.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Vannier MW. Radiologic evaluation of craniosynostosis. In: Cohen MM, MacLean RE, eds. Craniosynostosis: Diagnosis, Evaluation, and Management. 2nd ed. Oxford University Press; 2000: 147-174.

    • Search Google Scholar
    • Export Citation
  • 23

    Smith MM, Strottmann JM. Imaging of the optic nerve and visual pathways. Semin Ultrasound CT MR. 2001;22(6):473487.

  • 24

    Park HK, Bae HG, Choi SK, et al. Morphological study of sinus flow in the confluence of sinuses. Clin Anat. 2008;21(4):294300.

  • 25

    Florisson JM, Barmpalios G, Lequin M, et al. Venous hypertension in syndromic and complex craniosynostosis: the abnormal anatomy of the jugular foramen and collaterals. J Craniomaxillofac Surg. 2015;43(3):312318.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Mursch K, Enk T, Christen HJ, Markakis E, Behnke-Mursch J. Venous intracranial haemodynamics in children undergoing operative treatment for the repair of craniosynostosis. A prospective study using transcranial colour-coded duplex sonography. Childs Nerv Syst. 1999;15(2-3):110118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Kumpe DA, Bennett JL, Seinfeld J, Pelak VS, Chawla A, Tierney M. Dural sinus stent placement for idiopathic intracranial hypertension. J Neurosurg. 2012;116(3):538548.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Rich PM, Cox TC, Hayward RD. The jugular foramen in complex and syndromic craniosynostosis and its relationship to raised intracranial pressure. AJNR Am J Neuroradiol. 2003;24(1):4551.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Kalmar CL, Zapatero ZD, Kosyk MS, et al. Elevated intracranial pressure with craniosynostosis: a multivariate model of age, syndromic status, and number of involved cranial sutures. J Neurosurg Pediatr. 2021;28(6):716723.

    • Search Google Scholar
    • Export Citation
  • 30

    Xu W, Gerety P, Aleman T, Swanson J, Taylor J. Noninvasive methods of detecting increased intracranial pressure. Childs Nerv Syst. 2016;32(8):13711386.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Blum JD, Cho DY, Cheung L, et al. Making the diagnosis in sagittal craniosynostosis—it’s height, not length, that matters. Childs Nerv Syst. 2022;38(7):13311340.

    • Search Google Scholar
    • Export Citation
  • 32

    Villavisanis DF, Bartlett SP, Taylor JA. Assessing craniofacial dysmorphology and postoperative outcomes: past perils and promising pearls in plastic surgery. Cleft Palate Craniofac J. Published online April 14, 2022. doi:10.1177/10556656221093911

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Villavisanis DF, Khandelwal P, Zapatero ZD, et al. P67. Development of a craniofacial soft tissue anthropomorphic database: application of diffeomorphic algorithms to MRI. Plast Reconstr Surg Glob Open. 2022;10(4S):8081.

    • Search Google Scholar
    • Export Citation
  • 34

    Rufai SR, Marmoy OR, van de Lande LS, et al. Ophthalmologic detection of intracranial hypertension in surgical patients with craniosynostosis: a diagnostic accuracy study. Invest Ophthalmol Vis Sci. 2021;62(8):2680.

    • Search Google Scholar
    • Export Citation
  • 35

    Brodsky MC, Chen JJ, Wetjen NM. Optical coherence tomography for the noninvasive detection of elevated intracranial pressure: a new role for the ophthalmologist? JAMA Ophthalmol. 2017;135(4):329330.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Vartin C V, Nguyen AM, Balmitgere T, Bernard M, Tilikete C, Vighetto A. Detection of mild papilloedema using spectral domain optical coherence tomography. Br J Ophthalmol. 2012;96(3):375379.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 161 161 161
Full Text Views 28 28 28
PDF Downloads 32 32 32
EPUB Downloads 0 0 0