Why don’t ventricles dilate in pseudotumor cerebri? A circuit model of the cerebral windkessel

View More View Less
  • 1 Department of Neurological Surgery, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; and
  • | 2 Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

Pseudotumor cerebri is a disorder of intracranial dynamics characterized by elevated intracranial pressure (ICP) and chronic cerebral venous hypertension without structural abnormalities. A perplexing feature of pseudotumor is the absence of the ventriculomegaly found in obstructive hydrocephalus, although both diseases are associated with increased resistance to cerebrospinal fluid (CSF) resorption. Traditionally, the pathophysiology of ventricular dilation and obstructive hydrocephalus has been attributed to the backup of CSF due to impaired absorption, and it is unclear why backup of CSF with resulting ventriculomegaly would not occur in pseudotumor. In this study, the authors used an electrical circuit model to simulate the cerebral windkessel effect and explain the presence of ventriculomegaly in obstructive hydrocephalus but not in pseudotumor cerebri.

METHODS

The cerebral windkessel is a band-stop filter that dampens the arterial blood pressure pulse in the cranium. The authors used a tank circuit with parallel inductance and capacitance to model the windkessel. The authors distinguished the smooth flow of blood and CSF and the pulsatile flow of blood and CSF by using direct current (DC) and alternating current (AC) sources, respectively. The authors measured the dampening notch from ABP to ICP as the band-stop filter of the windkessel.

RESULTS

In obstructive hydrocephalus, loss of CSF pathway volume impaired the flow of AC power in the cranium and caused windkessel impairment, to which ventriculomegaly is an adaptation. In pseudotumor, venous hypertension affected DC power flow in the capillaries but did not affect AC power or the windkessel, therefore obviating the need for adaptive ventriculomegaly.

CONCLUSIONS

In pseudotumor, the CSF spaces are unaffected and the windkessel remains effective. Therefore, ventricles remain normal in size. In hydrocephalus, the windkessel, which depends on the flow of AC power in patent CSF spaces, is impaired, and the ventricles dilate as an adaptive process to restore CSF pathway volume. The windkessel model explains both ventriculomegaly in obstructive hydrocephalus and the lack of ventriculomegaly in pseudotumor. This model provides a novel understanding of the pathophysiology of disorders of CSF dynamics and has significant implications in clinical management.

ABBREVIATIONS

ABP = arterial blood pressure; AC = alternating current; C = capacitor; CBF = cerebral blood flow; CSF = cerebrospinal fluid; DC = direct current; ICP = intracranial pressure; L = inductor; Rc = resistance of the capacitor; Rcap = resistance to capillary blood flow; RCSF = resistance to cerebrospinal fluid flow.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Wall M. Update on idiopathic intracranial hypertension. Neurol Clin. 2017;35(1):4557.

  • 2

    Quincke HI. Meningitis serosa. Sammlung Klinischer Vorträge. 1893;67(23):655662.

  • 3

    Nonne M. Ueber Falle vom Symptomkomplex “Tumor Cerebri” mit Ausgang in Heilung (Pseudotumor Cerebri). Dtsch Z Nervenheilkd. 1904;27(3-4):169216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Symonds CP. Otitic hydrocephalus. Brain. 1931;54(1):5571.

  • 5

    Davidoff LM, Dyke C. Hypertensive meningeal hydrops: syndrome frequently following infection in the middle ear or elsewhere in the body. Am J Ophthalmol. 1937;20(9):908927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Dandy WE. Intracranial pressure without brain tumor: diagnosis and treatment. Ann Surg. 1937;106(4):492513.

  • 7

    Markey KA, Mollan SP, Jensen RH, Sinclair AJ. Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions. Lancet Neurol. 2016;15(1):7891.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Friedman DI, Jacobson DM. Diagnostic criteria for idiopathic intracranial hypertension. Neurology. 2002;59(10):14921495.

  • 9

    Toscano S, Lo Fermo S, Reggio E, Chisari CG, Patti F, Zappia M. An update on idiopathic intracranial hypertension in adults: a look at pathophysiology, diagnostic approach and management. J Neurol. 2021;268(9):32493268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    O’Reilly MW, Westgate CS, Hornby C, et al. A unique androgen excess signature in idiopathic intracranial hypertension is linked to cerebrospinal fluid dynamics. JCI Insight. 2019;4(6):e125348.

    • Search Google Scholar
    • Export Citation
  • 11

    Markey KA, Uldall M, Botfield H, et al. Idiopathic intracranial hypertension, hormones, and 11β-hydroxysteroid dehydrogenases. J Pain Res. 2016;9:223232.

  • 12

    Tabassi A, Salmasi AH, Jalali M. Serum and CSF vitamin A concentrations in idiopathic intracranial hypertension. Neurology. 2005;64(11):18931896.

  • 13

    Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013;93(4):18471892.

  • 14

    Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009;117(1):114.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Janny P, Chazal J, Colnet G, Irthum B, Georget AM. Benign intracranial hypertension and disorders of CSF absorption. Surg Neurol. 1981;15(3):168174.

  • 16

    Gjerris F, Soelberg Sørensen P, Vorstrup S, Paulson OB. Intracranial pressure, conductance to cerebrospinal fluid outflow, and cerebral blood flow in patients with benign intracranial hypertension (pseudotumor cerebri). Ann Neurol. 1985;17(2):158162.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Fera F, Bono F, Messina D, et al. Comparison of different MR venography techniques for detecting transverse sinus stenosis in idiopathic intracranial hypertension. J Neurol. 2005;252(9):10211025.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Alperin N, Ranganathan S, Bagci AM, et al. MRI evidence of impaired CSF homeostasis in obesity-associated idiopathic intracranial hypertension. AJNR Am J Neuroradiol. 2013;34(1):2934.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Lee HS, Yoon SH. Hypothesis for lateral ventricular dilatation in communicating hydrocephalus: new understanding of the Monro-Kellie hypothesis in the aspect of cardiac energy transfer through arterial blood flow. Med Hypotheses. 2009;72(2):174177.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Egnor MR. The cerebral windkessel as a dynamic pulsation absorber. BIO-Complexity. 2019;3:135.

  • 21

    Frank O. The basic shape of the arterial pulse. First treatise: mathematical analysis. 1899. J Mol Cell Cardiol. 1990;22(3):255277.

  • 22

    Bateman GA, Levi CR, Schofield P, Wang Y, Lovett EC. The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia. Neuroradiology. 2008;50(6):491497.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Wagshul ME, Kelly EJ, Yu HJ, Garlick B, Zimmerman T, Egnor MR. Resonant and notch behavior in intracranial pressure dynamics. J Neurosurg Pediatr. 2009;3(5):354364.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Egnor M, Rosiello A, Zheng L. A model of intracranial pulsations. Pediatr Neurosurg. 2001;35(6):284298.

  • 25

    Park EH, Eide PK, Zurakowski D, Madsen JR. Impaired pulsation absorber mechanism in idiopathic normal pressure hydrocephalus: laboratory investigation. J Neurosurg. 2012;117(6):11891196.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Czosnyka M. Association between arterial and intracranial pressures. Br J Neurosurg. 2000;14(2):127128.

  • 27

    Stergiopulos N, Westerhof BE, Westerhof N. Total arterial inertance as the fourth element of the windkessel model. Am J Physiol. 1999;276(1):H81H88.

  • 28

    Park EH, Dombrowski S, Luciano M, Zurakowski D, Madsen JR. Alterations of pulsation absorber characteristics in experimental hydrocephalus. J Neurosurg Pediatr. 2010;6(2):159170.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 532 532 143
Full Text Views 57 57 17
PDF Downloads 88 88 25
EPUB Downloads 0 0 0