Prediction of persistent ventricular dilation by initial ventriculomegaly and clot volume in a porcine model

View More View Less
  • 1 Department of Neurological Surgery, McGaw Medical Center of Northwestern University, Chicago, Illinois;
  • | 2 Center for Image-Guided Innovation and Therapeutic Intervention and
  • | 3 Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada;
  • | 4 Division of Neuroradiology, The Hospital for Sick Children, Toronto, Ontario, Canada; and
  • | 5 Department of Pathology, McGaw Medical Center of Northwestern University, Chicago, Illinois
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

OBJECTIVE

While intraventricular hemorrhage (IVH) is associated with posthemorrhagic ventricular dilation (PHVD), not all infants affected by high-grade IVH develop PHVD. The authors aimed to determine clot-associated predictors of PHVD in a porcine model by varying the amount and rate of direct intraventricular injection of whole autologous blood.

METHODS

Seven 1-week-old piglets underwent craniectomy and injection of autologous blood into the right lateral ventricle. They survived for a maximum of 28 days. MRI was performed prior to injection, immediately postoperatively, and every 7 days thereafter. T1-weighted, T2-weighted, and susceptibility-weighted imaging (SWI) sequences were used to segment ventricular and clot volumes. Spearman correlations were used to determine the relationship between blood and clot volumes and ventricular volumes over time.

RESULTS

The maximum ventricular volume was up to 12 times that of baseline. One animal developed acute hydrocephalus on day 4. All other animals survived until planned endpoints. The interaction between volume of blood injected and duration of injection was significantly associated with clot volume on the postoperative scan (p = 0.003) but not the amount of blood injected alone (p = 0.38). Initial postoperative and day 7 clot volumes, but not volume of blood injected, were correlated with maximum (p = 0.007 and 0.014) and terminal (p = 0.014 and 0.036) ventricular volumes. Initial postoperative ventricular volume was correlated with maximum and terminal ventricular volume (p = 0.007 and p = 0.014).

CONCLUSIONS

Initial postoperative, maximum, and terminal ventricular dilations were associated with the amount of clot formed, rather than the amount of blood injected. This supports the hypothesis that PHVD is determined by clot burden rather than the presence of blood products and allows further testing of early clot lysis to minimize PHVD risk.

ABBREVIATIONS

B-FFE = balanced fast field echo; HIFU = high-intensity focused ultrasound; IVH = intraventricular hemorrhage; PHVD = posthemorrhagic ventricular dilation; SWI = susceptibility-weighted imaging; VEN_BOLD = blood oxygenation level–dependent venographic.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Mukerji A, Shah V, Shah PS. Periventricular/intraventricular hemorrhage and neurodevelopmental outcomes: a meta-analysis. Pediatrics. 2015;136(6):11321143.

    • Search Google Scholar
    • Export Citation
  • 2

    Tsai AJ, Lasky RE, John SD, Evans PW, Kennedy KA. Predictors of neurodevelopmental outcomes in preterm infants with intraparenchymal hemorrhage. J Perinatol. 2014;34(5):399404.

    • Search Google Scholar
    • Export Citation
  • 3

    Lo M, Kishimoto J, Eagleson R, Bhattacharya S, de Ribaupierre S. Does ventricular volume affect the neurodevelopmental outcome in infants with intraventricular hemorrhage?. Childs Nerv Syst. 2020;36(3):569575.

    • Search Google Scholar
    • Export Citation
  • 4

    Klebe D, McBride D, Krafft PR, Flores JJ, Tang J, Zhang JH. Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: established mechanisms and proposed pathways. J Neurosci Res. 2020;98(1):105120.

    • Search Google Scholar
    • Export Citation
  • 5

    Hao XD, Le CS, Zhang HM, Shang DS, Tong LS, Gao F. Thrombin disrupts vascular endothelial-cadherin and leads to hydrocephalus via protease-activated receptors-1 pathway. CNS Neurosci Ther. 2019;25(10):11421150.

    • Search Google Scholar
    • Export Citation
  • 6

    Li Q, Ding Y, Krafft P, Wan W, Yan F, Wu G, et al. Targeting germinal matrix hemorrhage-induced overexpression of sodium-coupled bicarbonate exchanger reduces posthemorrhagic hydrocephalus formation in neonatal rats. J Am Heart Assoc. 2018;7(3):e007192.

    • Search Google Scholar
    • Export Citation
  • 7

    Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med. 2017;23(8):9971003.

    • Search Google Scholar
    • Export Citation
  • 8

    Mahaney KB, Buddhala C, Paturu M, Morales D, Limbrick DD Jr, Strahle JM. Intraventricular hemorrhage clearance in human neonatal cerebrospinal fluid: associations with hydrocephalus. Stroke. 2020;51(6):17121719.

    • Search Google Scholar
    • Export Citation
  • 9

    Lipina R, Reguli S, Novácková L, Podesvová H, Brichtová E. Relation between TGF-β 1 levels in cerebrospinal fluid and ETV outcome in premature newborns with posthemorrhagic hydrocephalus. Childs Nerv Syst. 2010;26(3):333341.

    • Search Google Scholar
    • Export Citation
  • 10

    Naureen I, Waheed KhA, Rathore AW, Victor S, Mallucci C, Goodden JR, et al. Fingerprint changes in CSF composition associated with different aetiologies in human neonatal hydrocephalus: inflammatory cytokines. Childs Nerv Syst. 2014;30(7):11551164.

    • Search Google Scholar
    • Export Citation
  • 11

    Habiyaremye G, Morales DM, Morgan CD, McAllister JP, CreveCoeur TS, Han RH, et al. Chemokine and cytokine levels in the lumbar cerebrospinal fluid of preterm infants with post-hemorrhagic hydrocephalus. Fluids Barriers CNS. 2017;14(1):35.

    • Search Google Scholar
    • Export Citation
  • 12

    Savman K, Nilsson UA, Blennow M, Kjellmer I, Whitelaw A. Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr Res. 2001;49(2):208212.

    • Search Google Scholar
    • Export Citation
  • 13

    Sävman K, Blennow M, Hagberg H, Tarkowski E, Thoresen M, Whitelaw A. Cytokine response in cerebrospinal fluid from preterm infants with posthaemorrhagic ventricular dilatation. Acta Paediatr. 2002;91(12):13571363.

    • Search Google Scholar
    • Export Citation
  • 14

    Pang D, Sclabassi RJ, Horton JA. Lysis of intraventricular blood clot with urokinase in a canine model: part 1. Canine intraventricular blood cast model. Neurosurgery. 1986;19(4):540546.

    • Search Google Scholar
    • Export Citation
  • 15

    Aquilina K, Hobbs C, Cherian S, Tucker A, Porter H, Whitelaw A, Thoresen M. A neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation. J Neurosurg. 2007;107(2)(suppl):126136.

    • Search Google Scholar
    • Export Citation
  • 16

    Gao C, Du H, Hua Y, Keep RF, Strahle J, Xi G. Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J Cereb Blood Flow Metab. 2014;34(6):10701075.

    • Search Google Scholar
    • Export Citation
  • 17

    Aquilina K, Chakkarapani E, Thoresen M. Early deterioration of cerebrospinal fluid dynamics in a neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation. J Neurosurg Pediatr. 2012;10(6):529537.

    • Search Google Scholar
    • Export Citation
  • 18

    Strahle JM, Garton T, Bazzi AA, Kilaru H, Garton HJ, Maher CO, et al. Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage. Neurosurgery. 2014;75(6):696706.

    • Search Google Scholar
    • Export Citation
  • 19

    Gao F, Liu F, Chen Z, Hua Y, Keep RF, Xi G. Hydrocephalus after intraventricular hemorrhage: the role of thrombin. J Cereb Blood Flow Metab. 2014;34(3):489494.

    • Search Google Scholar
    • Export Citation
  • 20

    Looi T, Piorkowska K, Mougenot C, Waspe A, Hynynen K, Drake J. An MR-based quantitative intraventricular hemorrhage porcine model for MR-guided focused ultrasound thrombolysis. Childs Nerv Syst. 2018;34(9):16431650.

    • Search Google Scholar
    • Export Citation
  • 21

    Martini WZ. The effects of hypothermia on fibrinogen metabolism and coagulation function in swine. Metabolism. 2007;56(2):214221.

  • 22

    Smith SA, McMichael MA, Gilor S, Galligan AJ, Hoh CM. Correlation of hematocrit, platelet concentration, and plasma coagulation factors with results of thromboelastometry in canine whole blood samples. Am J Vet Res. 2012;73(6):789798.

    • Search Google Scholar
    • Export Citation
  • 23

    Brun JF. Hormones, metabolism and body composition as major determinants of blood rheology: potential pathophysiological meaning. Clin Hemorheol Microcirc. 2002;26(2):6379.

    • Search Google Scholar
    • Export Citation
  • 24

    Wolberg AS, Campbell RA. Thrombin generation, fibrin clot formation and hemostasis. Transfus Apheresis Sci. 2008;38(1):1523.

  • 25

    Fager AM, Hoffman M. Biology of coagulation and coagulopathy in neurologic surgery. Neurosurg Clin N Am. 2018;29(4):475483.

  • 26

    Doering CJ, Wagg CR, Caulkett NA, McAllister RK, Brookfield CE, Paterson JM, et al. Comparison of arterial and venous whole blood clot initiation, formation, and strength by thromboelastography in anesthetized swine. Blood Coagul Fibrinolysis. 2014;25(1):2024.

    • Search Google Scholar
    • Export Citation
  • 27

    Mercado-Shekhar KP, Kleven RT, Aponte Rivera H, Lewis R, Karani KB, Vos HJ, et al. Effect of clot stiffness on recombinant tissue plasminogen activator lytic susceptibility in vitro. Ultrasound Med Biol. 2018;44(12):27102727.

    • Search Google Scholar
    • Export Citation
  • 28

    Etus V, Kahilogullari G, Karabagli H, Unlu A. Early endoscopic ventricular irrigation for the treatment of neonatal posthemorrhagic hydrocephalus: a feasible treatment option or not? A multicenter study. Turk Neurosurg. 2018;28(1):137141.

    • Search Google Scholar
    • Export Citation
  • 29

    d’Arcangues C, Schulz M, Bührer C, Thome U, Krause M, Thomale UW. Extended experience with neuroendoscopic lavage for posthemorrhagic hydrocephalus in neonates. World Neurosurg. 2018;116:e217e224.

    • Search Google Scholar
    • Export Citation
  • 30

    Luyt K, Jary S, Lea C, Young GJ, Odd D, Miller H, et al. Ten-year follow-up of a randomised trial of drainage, irrigation and fibrinolytic therapy (DRIFT) in infants with post-haemorrhagic ventricular dilatation. Health Technol Assess. 2019;23(4):1116.

    • Search Google Scholar
    • Export Citation
  • 31

    Schulz M, Bührer C, Pohl-Schickinger A, Haberl H, Thomale UW. Neuroendoscopic lavage for the treatment of intraventricular hemorrhage and hydrocephalus in neonates. J Neurosurg Pediatr. 2014;13(6):626635.

    • Search Google Scholar
    • Export Citation
  • 32

    Li T, Zhang P, Yuan B, Zhao D, Chen Y, Zhang X. Thrombin-induced TGF-β1 pathway: a cause of communicating hydrocephalus post subarachnoid hemorrhage. Int J Mol Med. 2013;31(3):660666.

    • Search Google Scholar
    • Export Citation
  • 33

    Olopade FE, Shokunbi MT, Sirén AL. The relationship between ventricular dilatation, neuropathological and neurobehavioural changes in hydrocephalic rats. Fluids Barriers CNS. 2012;9(1):19.

    • Search Google Scholar
    • Export Citation
  • 34

    Kazan S, Güra A, Uçar T, Korkmaz E, Ongun H, Akyuz M. Hydrocephalus after intraventricular hemorrhage in preterm and low-birth weight infants: analysis of associated risk factors for ventriculoperitoneal shunting. Surg Neurol. 2005;64(suppl 2):S77S81.

    • Search Google Scholar
    • Export Citation
  • 35

    Obeid R, Tabrizi PR, Mansoor A, Cerrolaza JJ, Chang T, Penn AA, Linguraru MG. Ventricular shape evaluation on early ultrasound predicts post-hemorrhagic hydrocephalus. Pediatr Res. 2019;85(3):293298.

    • Search Google Scholar
    • Export Citation
  • 36

    Whitelaw A, Jary S, Kmita G, Wroblewska J, Musialik-Swietlinska E, Mandera M, et al. Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics. 2010;125(4):e852e858.

    • Search Google Scholar
    • Export Citation
  • 37

    Whitelaw A, Pople I, Cherian S, Evans D, Thoresen M. Phase 1 trial of prevention of hydrocephalus after intraventricular hemorrhage in newborn infants by drainage, irrigation, and fibrinolytic therapy. Pediatrics. 2003;111(4 Pt 1):759765.

    • Search Google Scholar
    • Export Citation
  • 38

    Schweser F, Deistung A, Lehr BW, Reichenbach JR. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys. 2010;37(10):51655178.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 284 284 284
Full Text Views 12 12 12
PDF Downloads 14 14 14
EPUB Downloads 0 0 0