Placement of leads for stereotactic electroencephalography without the use of anchor bolts: technical note

View More View Less
  • 1 Department of Neurosurgery,
  • 2 Advocate Bromenn Medical Center, Normal, Illinois;
  • 3 Children’s Hospital of Colorado, Aurora; and
  • 4 Neuroscience Administration Research Team, Aurora, Colorado
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

Stereotactic electroencephalography (SEEG) is an increasingly common technique that neurosurgeons use to help identify the epileptogenic zone. The anchor bolt, which typically secures the electrode to the skull, can be problematic in very thin bone or in electrodes placed in the occiput.

METHODS

A technique is described to place electrodes without the use of an anchor bolt. Accuracy data for entry point, target point, and depth were collected and compared between electrodes placed with and those placed without an anchor bolt.

RESULTS

A total of 58 patients underwent placement of 793 electrodes, of which 25 were boltless. The mean entry and depth errors at target were equivalent, although there was a trend toward greater depth error with boltless electrodes (3.4 mm vs 2.01 mm and 2.59 mm in the bolted groups, respectively). The mean lateral target error was slightly but significantly smaller for boltless electrodes. The majority (60%) of boltless leads were placed into thin temporal squamous bone. The average skull thickness at the entry point for all boltless leads was 1.85 mm.

CONCLUSIONS

Boltless SEEG electrodes can be placed through thin bone, adjacent to a cranial defect, or in the occiput with equivalent accuracy to electrodes placed with anchor bolts.

ABBREVIATIONS EEG = electroencephalography; EZ = epileptogenic zone; SEEG = stereotactic EEG.

Supplementary Materials

    • Supplementary Tables 1 and 2 (PDF 358 KB)

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Brent R. O’Neill: Children’s Hospital of Colorado, Aurora, CO. brent.oneill@childrenscolorado.org.

SUBMITTED May 16, 2020. ACCEPTED July 17, 2020.

INCLUDE WHEN CITING Published online December 18, 2020; DOI: 10.3171/2020.7.PEDS20403.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Ngugi AK, Bottomley C, Kleinschmidt I, Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia. 2010;51(5):883890.

    • Search Google Scholar
    • Export Citation
  • 2

    World Health Organization. Epilepsy: A Public Health Imperative. WHO; 2019.

  • 3

    Fiest KM, Sauro KM, Wiebe S, Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology. 2017;88(3):296303.

    • Search Google Scholar
    • Export Citation
  • 4

    Kalilani L, Sun X, Pelgrims B, The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia. 2018;59(12):21792193.

    • Search Google Scholar
    • Export Citation
  • 5

    Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314319.

  • 6

    Ramos-Lizana J, Rodriguez-Lucenilla MI, Aguilera-López P, A study of drug-resistant childhood epilepsy testing the new ILAE criteria. Seizure. 2012;21(4):266272.

    • Search Google Scholar
    • Export Citation
  • 7

    Aaberg KM, Bakken IJ, Lossius MI, Short-term seizure outcomes in childhood epilepsy. Pediatrics. 2018;141(6):e20174016.

  • 8

    Wirrell E, Wong-Kisiel L, Mandrekar J, Nickels K. Predictors and course of medically intractable epilepsy in young children presenting before 36 months of age: a retrospective, population-based study. Epilepsia. 2012;53(9):15631569.

    • Search Google Scholar
    • Export Citation
  • 9

    Zhang J, Liu W, Chen H, Multimodal neuroimaging in presurgical evaluation of drug-resistant epilepsy. Neuroimage Clin. 2013;4:3544.

  • 10

    Gadgil N, LoPresti MA, Muir M, An update on pediatric surgical epilepsy: Part I. Surg Neurol Int. 2019;10:257.

  • 11

    Lüders HO, Najm I, Nair D, The epileptogenic zone: general principles. Epileptic Disord. 2006;8(suppl 2):S1S9.

  • 12

    Pondal-Sordo M, Diosy D, Téllez-Zenteno JF, Usefulness of intracranial EEG in the decision process for epilepsy surgery. Epilepsy Res. 2007;74(2-3):176182.

    • Search Google Scholar
    • Export Citation
  • 13

    Talairach J, Bancaud J, Bonis A, Functional stereotaxic exploration of epilepsy. Confin Neurol. 1962;22:328331.

  • 14

    Murphy MA, O’Brien TJ, Cook MJ. Insertion of depth electrodes with or without subdural grids using frameless stereotactic guidance systems—technique and outcome. Br J Neurosurg. 2002;16(2):119125.

    • Search Google Scholar
    • Export Citation
  • 15

    Mehta AD, Labar D, Dean A, Frameless stereotactic placement of depth electrodes in epilepsy surgery. J Neurosurg. 2005;102(6):10401045.

    • Search Google Scholar
    • Export Citation
  • 16

    Ortler M, Sohm F, Eisner W, Frame-based vs frameless placement of intrahippocampal depth electrodes in patients with refractory epilepsy: a comparative in vivo (application) study. Neurosurgery. 2011;68(4):881887.

    • Search Google Scholar
    • Export Citation
  • 17

    Cardinale F, Cossu M, Castana L, Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery. 2013;72(3):353366.

    • Search Google Scholar
    • Export Citation
  • 18

    Serletis D, Bulacio J, Bingaman W, The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. J Neurosurg. 2014;121(5):12391246.

    • Search Google Scholar
    • Export Citation
  • 19

    Ollivier I, Behr C, Cebula H, Efficacy and safety in frameless robot-assisted stereo-electroencephalography (SEEG) for drug-resistant epilepsy. Neurochirurgie. 2017;63(4):286290.

    • Search Google Scholar
    • Export Citation
  • 20

    Eljamel MS. Robotic application in epilepsy surgery. Int J Med Robot. 2006;2(3):233237.

  • 21

    Musolino A, Tournoux P, Missir O, Talairach J. Methodology of “in vivo” anatomical study and stereo-electroencephalographic exploration in brain surgery for epilepsy. J Neuroradiol. 1990;17(2):67102.

    • Search Google Scholar
    • Export Citation
  • 22

    Gonzalez-Martinez J, Mullin J, Vadera S, Stereotactic placement of depth electrodes in medically intractable epilepsy. J Neurosurg. 2014;120(3):639644.

    • Search Google Scholar
    • Export Citation
  • 23

    Isnard J, Taussig D, Bartolomei F, French guidelines on stereoelectroencephalography (SEEG). Neurophysiol Clin. 2018;48(1):513.

  • 24

    Mirandola L, Mai RF, Francione S, Stereo-EEG: Diagnostic and therapeutic tool for periventricular nodular heterotopia epilepsies. Epilepsia. 2017;58(11):19621971.

    • Search Google Scholar
    • Export Citation
  • 25

    Bourdillon P, Isnard J, Catenoix H, Stereo-electro-encephalography-guided radiofrequency thermocoagulation: from in vitro and in vivo data to technical guidelines. World Neurosurg. 2016;94:7379.

    • Search Google Scholar
    • Export Citation
  • 26

    Jones JC, Alomar S, McGovern RA, Techniques for placement of stereotactic electroencephalographic depth electrodes: comparison of implantation and tracking accuracies in a cadaveric human study. Epilepsia. 2018;59(9):16671675.

    • Search Google Scholar
    • Export Citation
  • 27

    González-Martínez J, Bulacio J, Thompson S, Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery. 2016;78(2):169180.

    • Search Google Scholar
    • Export Citation
  • 28

    Gross RE, Sung EK, Mulligan P, Accuracy of frameless image-guided implantation of depth electrodes for intracranial epilepsy monitoring. J Neurosurg. 2020;132(3):681691.

    • Search Google Scholar
    • Export Citation
  • 29

    Miller BA, Salehi A, Limbrick DD Jr, Smyth MD. Applications of a robotic stereotactic arm for pediatric epilepsy and neurooncology surgery. J Neurosurg Pediatr. 2017;20(4):364370.

    • Search Google Scholar
    • Export Citation
  • 30

    Ho AL, Muftuoglu Y, Pendharkar AV, Robot-guided pediatric stereoelectroencephalography: single-institution experience. J Neurosurg Pediatr. 2018;22(5):489496.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 162 162 33
Full Text Views 30 30 11
PDF Downloads 17 17 9
EPUB Downloads 0 0 0