Robot-assisted stereotactic biopsy of pediatric brainstem and thalamic lesions

View More View Less
  • 1 Department of Neurosurgery, University of California, San Diego, La Jolla, California;
  • 2 Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas;
  • 3 Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts;
  • 4 Department of Neurosurgery, Children’s National Health System, Washington, DC; and
  • 5 Department of Neurology and
  • 6 Division of Neurosurgery, Rady Children’s Hospital, San Diego, California
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

Biopsies of tumors located in deep midline structures require highly accurate stereotaxy to safely obtain lesional tissue suitable for molecular and histological analysis. Versatile platforms are needed to meet a broad range of technical requirements and surgeon preferences. The authors present their institutional experience with the robotic stereotactic assistance (ROSA) system in a series of robot-assisted biopsies of pediatric brainstem and thalamic tumors.

METHODS

A retrospective analysis was performed of 22 consecutive patients who underwent 23 stereotactic biopsies of brainstem or thalamic lesions using the ROSA platform at Rady Children’s Hospital in San Diego between December 2015 and January 2020.

RESULTS

The ROSA platform enabled rapid acquisition of lesional tissue across various combinations of approaches, registration techniques, and positioning. No permanent deficits, major adverse outcomes, or deaths were encountered. One patient experienced temporary cranial neuropathy, and 3 developed small asymptomatic hematomas. The diagnostic success rate of the ROSA system was 91.3%.

CONCLUSIONS

Robot-assisted stereotactic biopsy of these lesions may be safely performed using the ROSA platform. This experience comprises the largest clinical series to date dedicated to robot-assisted biopsies of brainstem and diencephalic tumors.

ABBREVIATIONS DIPG = diffuse intrinsic pontine glioma; ETV = endoscopic third ventriculostomy; EVD = external ventricular drain; FFPE = formalin-fixed paraffin-embedded; H3 = histone 3; IQR = interquartile range; LGG = low-grade glioma; ROSA = robotic stereotactic assistance; VP = ventriculoperitoneal.

Supplementary Materials

    • Supplemental Figure and Tables (PDF 799 KB)

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Mihir Gupta: University of California, San Diego, La Jolla, CA. mig044@health.ucsd.edu.

INCLUDE WHEN CITING Published online December 25, 2020; DOI: 10.3171/2020.7.PEDS20373.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Brat DJ, Aldape K, Colman H, cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020;139(3):603608.

    • Search Google Scholar
    • Export Citation
  • 2

    Lin GL, Wilson KM, Ceribelli M, Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci Transl Med. 2019;11(519):eaaw0064.

    • Search Google Scholar
    • Export Citation
  • 3

    Williams JR, Young CC, Vitanza NA, Progress in diffuse intrinsic pontine glioma: advocating for stereotactic biopsy in the standard of care. Neurosurg Focus. 2020;48(1):E4.

    • Search Google Scholar
    • Export Citation
  • 4

    De Benedictis A, Trezza A, Carai A, Robot-assisted procedures in pediatric neurosurgery. Neurosurg Focus. 2017;42(5):E7.

  • 5

    Dellaretti M, Reyns N, Touzet G, Stereotactic biopsy for brainstem tumors: comparison of transcerebellar with transfrontal approach. Stereotact Funct Neurosurg. 2012;90(2):7983.

    • Search Google Scholar
    • Export Citation
  • 6

    Lefranc M, Capel C, Pruvot-Occean AS, Frameless robotic stereotactic biopsies: a consecutive series of 100 cases. J Neurosurg. 2015;122(2):342352.

    • Search Google Scholar
    • Export Citation
  • 7

    Minchev G, Kronreif G, Ptacek W, A novel robot-guided minimally invasive technique for brain tumor biopsies. J Neurosurg. 2020;132(1):150158.

    • Search Google Scholar
    • Export Citation
  • 8

    Quick-Weller J, Lescher S, Kashefiolasl S, Benefit of stereotactic procedures in a series of 43 children. J Child Neurol. 2016;31(7):907912.

    • Search Google Scholar
    • Export Citation
  • 9

    Terrier L, Gilard V, Marguet F, Stereotactic brain biopsy: evaluation of robot-assisted procedure in 60 patients. Acta Neurochir (Wien). 2019;161(3):545552.

    • Search Google Scholar
    • Export Citation
  • 10

    Yasin H, Hoff HJ, Blümcke I, Simon M. Experience with 102 frameless stereotactic biopsies using the neuromate robotic device. World Neurosurg. 2019;123:e450e456.

    • Search Google Scholar
    • Export Citation
  • 11

    Carai A, Mastronuzzi A, De Benedictis A, Robot-assisted stereotactic biopsy of diffuse intrinsic pontine glioma: a single-center experience. World Neurosurg. 2017;101:584588.

    • Search Google Scholar
    • Export Citation
  • 12

    Coca HA, Cebula H, Benmekhbi M, Diffuse intrinsic pontine gliomas in children: interest of robotic frameless assisted biopsy. A technical note. Neurochirurgie. 2016;62(6):327331.

    • Search Google Scholar
    • Export Citation
  • 13

    Dawes W, Marcus HJ, Tisdall M, Aquilina K. Robot-assisted stereotactic brainstem biopsy in children: prospective cohort study. J Robot Surg. 2019;13(4):575579.

    • Search Google Scholar
    • Export Citation
  • 14

    Haegelen C, Touzet G, Reyns N, Stereotactic robot-guided biopsies of brain stem lesions: experience with 15 cases. Neurochirurgie. 2010;56(5):363367.

    • Search Google Scholar
    • Export Citation
  • 15

    Hoshide R, Calayag M, Meltzer H, Robot-assisted endoscopic third ventriculostomy: institutional experience in 9 patients. J Neurosurg Pediatr. 2017;20(2):125133.

    • Search Google Scholar
    • Export Citation
  • 16

    Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153160.

    • Search Google Scholar
    • Export Citation
  • 17

    Drake JM, Joy M, Goldenberg A, Kreindler D. Computer- and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery. 1991;29(1):2733.

    • Search Google Scholar
    • Export Citation
  • 18

    Hamisch C, Kickingereder P, Fischer M, Update on the diagnostic value and safety of stereotactic biopsy for pediatric brainstem tumors: a systematic review and meta-analysis of 735 cases. J Neurosurg Pediatr. 2017;20(3):261268.

    • Search Google Scholar
    • Export Citation
  • 19

    Kickingereder P, Willeit P, Simon T, Ruge MI. Diagnostic value and safety of stereotactic biopsy for brainstem tumors: a systematic review and meta-analysis of 1480 cases. Neurosurgery. 2013;72(6):873882.

    • Search Google Scholar
    • Export Citation
  • 20

    Dhawan S, He Y, Bartek J Jr, Comparison of frame-based versus frameless intracranial stereotactic biopsy: systematic review and meta-analysis. World Neurosurg. 2019;127:607616.e4, e604.

    • Search Google Scholar
    • Export Citation
  • 21

    Woodworth GF, McGirt MJ, Samdani A, Frameless image-guided stereotactic brain biopsy procedure: diagnostic yield, surgical morbidity, and comparison with the frame-based technique. J Neurosurg. 2006;104(2):233237.

    • Search Google Scholar
    • Export Citation
  • 22

    Louis DN, Perry A, Reifenberger G, The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803820.

    • Search Google Scholar
    • Export Citation
  • 23

    Tsai EC, Santoreneos S, Rutka JT. Tumors of the skull base in children: review of tumor types and management strategies. Neurosurg Focus. 2002;12(5):e1.

    • Search Google Scholar
    • Export Citation
  • 24

    Freeman CR, Farmer JP. Pediatric brain stem gliomas: a review. Int J Radiat Oncol Biol Phys. 1998;40(2):265271.

  • 25

    Cooney T, Lane A, Bartels U, Contemporary survival endpoints: an International Diffuse Intrinsic Pontine Glioma Registry study. Neuro Oncol. 2017;19(9):12791280.

    • Search Google Scholar
    • Export Citation
  • 26

    Albright AL, Packer RJ, Zimmerman R, Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children’s Cancer Group. Neurosurgery. 1993;33(6):10261030.

    • Search Google Scholar
    • Export Citation
  • 27

    Khuong-Quang DA, Buczkowicz P, Rakopoulos P, K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012;124(3):439447.

    • Search Google Scholar
    • Export Citation
  • 28

    Gupta N, Goumnerova LC, Manley P, Prospective feasibility and safety assessment of surgical biopsy for patients with newly diagnosed diffuse intrinsic pontine glioma. Neuro Oncol. 2018;20(11):15471555.

    • Search Google Scholar
    • Export Citation
  • 29

    Mueller S, Jain P, Liang WS, A pilot precision medicine trial for children with diffuse intrinsic pontine glioma—PNOC003: a report from the Pacific Pediatric Neuro-Oncology Consortium. Int J Cancer. 2019;145(7):18891901.

    • Search Google Scholar
    • Export Citation
  • 30

    Souweidane MM, Kramer K, Pandit-Taskar N, Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol. 2018;19(8):10401050.

    • Search Google Scholar
    • Export Citation
  • 31

    Panditharatna E, Kilburn LB, Aboian MS, Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy. Clin Cancer Res. 2018;24(23):58505859.

    • Search Google Scholar
    • Export Citation
  • 32

    Auner GW, Koya SK, Huang C, Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev. 2018;37(4):691717.

Metrics

All Time Past Year Past 30 Days
Abstract Views 390 390 327
Full Text Views 35 35 29
PDF Downloads 21 21 18
EPUB Downloads 0 0 0