Evaluation of head impact exposure measured from youth football game plays

Restricted access

OBJECTIVE

There is a growing body of literature informing efforts to improve the safety of football; however, research relating on-field activity to head impacts in youth football is limited. Therefore, the objective of this study was to compare head impact exposure (HIE) measured in game plays among 3 youth football teams.

METHODS

Head impact and video data were collected from athletes (ages 10–13 years) participating on 3 youth football teams. Video analysis was performed to verify head impacts and assign each to a specific play type. Each play was categorized as a down, punt, kickoff, field goal, or false start. Kickoffs and punts were classified as special teams. Downs were classified as running, passing, or other. HIE was quantified by play type in terms of mean, median, and 95th percentile linear and rotational acceleration. Mixed-effects models were used to assess differences in acceleration among play types. Contact occurring on special teams plays was evaluated using a standardized video abstraction form.

RESULTS

A total of 3003 head impacts over 27.5 games were analyzed and paired with detailed video coding of plays. Most head impacts were attributed to running (79.6%), followed by passing (14.0%), and special teams (6.4%) plays. The 95th percentile linear acceleration measured during each play type was 52.6g, 50.7g, and 65.5g, respectively. Special teams had significantly greater mean linear acceleration than running and passing plays (both p = 0.03). The most common kick result on special teams was a deep kick, of which 85% were attempted to be returned. No special teams plays resulted in a touchback, and one resulted in a fair catch. One-third of all special teams plays and 92% of all nonreturned kicks resulted in athletes diving toward the ball.

CONCLUSIONS

The results demonstrate a trend toward higher head impact magnitudes on special teams than for running and passing plays, but a greater number of impacts were measured during running plays. Deep kicks were most common on special teams, and many returned and nonreturned kicks resulted in athletes diving toward the ball. These results support policy changes to youth special teams plays, including modifying the yard line the ball is kicked from and coaching proper return technique. Further investigation into biomechanical exposure measured during game impact scenarios is needed to inform policy relevant to the youth level.

ABBREVIATIONS AYF = American Youth Football; HIE = head impact exposure; HITS = Head Impact Telemetry System.

Article Information

Correspondence Jillian E. Urban: Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC. jurban@wakehealth.edu.

INCLUDE WHEN CITING Published online May 10, 2019; DOI: 10.3171/2019.2.PEDS18558.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

© AANS, except where prohibited by US copyright law.

Headings

Figures

  • View in gallery

    Flowchart demonstrating the play classification scheme.

  • View in gallery

    Type of contact observed on special teams plays.

  • View in gallery

    Characteristics of contact involving the ball carrier on special teams plays in which the ball was attempted to be returned. Note: the result was deemed inconclusive if the response could not be determined from the video.

References

TrendMD

Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 94 94 94
Full Text Views 21 21 21
PDF Downloads 12 12 12
EPUB Downloads 0 0 0

PubMed

Google Scholar