Noninvasive detection of the distinction between progressive and compensated hydrocephalus in infants: is it possible?

Clinical article

Paul H. Leliefeld M.D. 1 , Rob H. J. M. Gooskens M.D., Ph.D. 2 , Cees A. F. Tulleken M.D., Ph.D. 1 , Luca Regli M.D., Ph.D. 1 , Cuno S. P. M. Uiterwaal M.D., Ph.D. 4 , K. Sen Han M.D., Ph.D. 1 and L. Jaap Kappelle M.D., Ph.D. 3
View More View Less
  • 1 Departments of Neurosurgery,
  • 2 Child Neurology,
  • 3 Neurology, and
  • 4 Julius Center for Health Sciences and Primary Care, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object

Clinical signs and symptoms of hydrocephalus can be clear and specific, but also subtle, nonspecific, or even absent. It may be difficult to decide whether shunt placement is indicated, especially in infants. Therefore, there is a need for the development of better noninvasive detection methods to distinguish between compensated and (slowly) progressive hydrocephalus. Early interference can reverse the cerebral damage, whereas the detection of a nonpathological state in infants with compensated hydrocephalus avoids the complications of unnecessary shunt procedures. Using MR imaging, the authors investigated cerebral blood flow (CBF) and apparent diffusion coefficients (ADCs) measured in infants with clinically compensated hydrocephalus.

Methods

The diagnosis of compensated hydrocephalus was made on the basis of clinical criteria, consisting of no signs or symptoms of increased intracranial pressure (ICP), measurement of a normal ICP, and standard MR imaging showing enlarged ventricles. Flow measurements through both internal carotid arteries and the basilar artery were considered to represent the total CBF. In addition, ADC values were assessed in 5 different regions of interest in the brain parenchyma using diffusion weighted imaging. Brain volumetric measurement was performed to express CBF in ml/100 cm3 brain/min, thus compensating for physiological CBF growth over time. Mean arterial blood pressure was manually measured to exclude this factor as a cause of a possible change in CBF. Intracranial pressure measurement was performed noninvasively using the Rotterdam Teletransducer.

Results

Eighteen infants with clinically compensated hydrocephalus were included. The mean CBF was 53.5 ml/100 cm3 of brain/min. The individual CBF values were graphically compared with age-related normal CBF values and fell in the normal range. Mean ADC value was 890.0 ×10−6 mm2/sec. Apparent diffusion coefficient values per region of interest were graphically compared with normal ADC values per region of interest and fell within the normal range.

Conclusions

In infants with hydrocephalus, normal CBF and low ADC values, as measured using MR imaging, are associated with compensated hydrocephalus and may support a conservative approach with respect to the decision on whether to place a shunt.

Abbreviations used in this paper: ADC = apparent diffusion coefficient; AFP = anterior fontanelle pressure; BA = basilar artery; CBF = cerebral blood flow; DW = diffusion weighted; ICA = internal carotid artery; ICP = intracranial pressure; ROI = region of interest.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address correspondence to: Paul H. Leliefeld, M.D., Department of Neurosurgery, University Medical Center Utrecht, G 03.124, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands. email: p.h.leliefeld@umcutrecht.nl.
  • 1

    Adelson PD, , Clyde B, , Kochanek PM, , Wisniewski SR, , Marion DW, & Yonas H: Cerebrovascular response in infants and young children following severe traumatic brain injury: a preliminary report. Pediatr Neurosurg 26:200207, 1997

    • Search Google Scholar
    • Export Citation
  • 2

    Anbeek P, , Vincken KL, , van Bochove GS, , van Osch MJ, & van der Grond J: Probabilistic segmentation of brain tissue in MR imaging. Neuroimage 27:795804, 2005

    • Search Google Scholar
    • Export Citation
  • 3

    Aoki K, , Uchihara T, , Tsuchiya K, , Nakamura A, , Ikeda K, & Wakayama Y: Enhanced expression of aquaporin 4 in human brain with infarction. Acta Neuropathol 106:121124, 2003

    • Search Google Scholar
    • Export Citation
  • 4

    Aoki-Yoshino K, , Uchihara T, , Duyckaerts C, , Nakamura A, , Hauw JJ, & Wakayama Y: Enhanced expression of aquaporin 4 in human brain with inflammatory diseases. Acta Neuropathol 110:281288, 2005

    • Search Google Scholar
    • Export Citation
  • 5

    Bakker CJ, , Hartkamp MJ, & Mali WP: Measuring blood flow by nontriggered 2D phase-contrast MR angiography. Magn Reson Imaging 14:609614, 1996

    • Search Google Scholar
    • Export Citation
  • 6

    Bakker CJ, , Kouwenhoven M, , Hartkamp MJ, , Hoogeveen RM, & Mali WP: Accuracy and precision of time-averaged flow as measured by nontriggered 2D phase-contrast MR angiography, a phantom evaluation. Magn Reson Imaging 13:959965, 1995

    • Search Google Scholar
    • Export Citation
  • 7

    Beintema DJ, & Prechtl H: A neurological study of newborn infants: state of the infant. Clin Med Dev 28:2841, 1968

  • 8

    Bendel P, , Buonocore E, , Bockisch A, & Besozzi MC: Blood flow in the carotid arteries: quantification by using phase-sensitive MR imaging. AJR Am J Roentgenol 152:13071310, 1989

    • Search Google Scholar
    • Export Citation
  • 9

    Biagi L, , Abbruzzese A, , Bianchi MC, , Alsop DC, , Del Guerra A, & Tosetti M: Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging 25:696702, 2007

    • Search Google Scholar
    • Export Citation
  • 10

    Blankensteijn JD, , van der Grond J, , Mali WP, & Eikelboom BC: Flow volume changes in the major cerebral arteries before and after carotid endarterectomy: an MR angiography study. Eur J Vasc Endovasc Surg 14:446450, 1997

    • Search Google Scholar
    • Export Citation
  • 11

    Buijs PC, , Krabbe-Hartkamp MJ, , Bakker CJ, , de Lange EE, , Ramos LM, & Breteler MM, : Effect of age on cerebral blood flow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology 209:667674, 1998

    • Search Google Scholar
    • Export Citation
  • 12

    Caputo GR, , Kondo C, , Masui T, , Geraci SJ, , Foster E, & O'Sullivan MM, : Right and left lung perfusion: in vitro and in vivo validation with oblique-angle, velocity-encoded cine MR imaging. Radiology 180:693698, 1991

    • Search Google Scholar
    • Export Citation
  • 13

    Casey AT, , Kimmings EJ, , Kleinlugtebeld AD, , Taylor WA, , Harkness WF, & Hayward RD: The long-term outlook for hydrocephalus in childhood. A ten-year cohort study of 155 patients. Pediatr Neurosurg 27:6370, 1997

    • Search Google Scholar
    • Export Citation
  • 14

    Chiron C, , Raynaud C, , Mazière B, , Zilbovicius M, , Laflamme L, & Masure MC, : Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med 33:696703, 1992

    • Search Google Scholar
    • Export Citation
  • 15

    Chumas P, , Tyagi A, & Livingston J: Hydrocephalus—what's new?. Arch Dis Child Fetal Neonatal Ed 85:F149F154, 2001

  • 16

    Coley BD, & Kosnik EJ: Abdominal complications of ventriculoperitoneal shunts in children. Semin Ultrasound CT MR 27:152160, 2006

  • 17

    de Jong DA, , Maas AI, , Berfelo MW, , den Ouden AH, & de Lange SA: The Rotterdam teletransducer. A telemetric device for measuring epidural pressure. Biotelem Patient Monit 9:154165, 1982

    • Search Google Scholar
    • Export Citation
  • 18

    de Jong DA, , Maas AI, , den Ouden AH, & de Lange SA: Long-term intracranial pressure monitoring. Med Prog Technol 10:8996, 1984

  • 19

    de Jong DA, , Ouden AH, , van de Boon TA, , Yeskoot F, & Maas A: Telemetered epidural pressure. Biotelemetry 2:257264, 1975

  • 20

    Del Bigio MR: Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573585, 1993

  • 21

    Di Rocco C, , Caldarelli M, , Maira G, & Rossi GF: The study of cerebrospinal fluid dynamics in apparently ‘arrested’ hydrocephalus in children. Childs Brain 3:359374, 1977

    • Search Google Scholar
    • Export Citation
  • 22

    Di Rocco C, , Massimi L, & Tamburrini G: Shunts vs endoscopic third ventriculostomy in infants: are there different types and/or rates of complications? A review. Childs Nerv Syst 22:15731589, 2006

    • Search Google Scholar
    • Export Citation
  • 23

    Dombrowski SM, , Schenk S, , Leichliter A, , Leibson Z, , Fukamachi K, & Luciano MG: Chronic hydrocephalus-induced changes in cerebral blood flow: mediation through cardiac effects. J Cereb Blood Flow Metab 26:12981310, 2006

    • Search Google Scholar
    • Export Citation
  • 24

    Domingo Z, , Bradley JK, , Blamire AM, , Brindle K, , Styles P, & Rajagopalan B: Diffusion weighted imaging and magnetic resonance spectroscopy in a low flow ischaemia model due to endothelin induced vasospasm. NMR Biomed 13:154162, 2000

    • Search Google Scholar
    • Export Citation
  • 25

    Drake JM, , Kestle JR, , Milner R, , Cinalli G, , Boop F, & Piatt J Jr, : Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43:294305, 1998

    • Search Google Scholar
    • Export Citation
  • 26

    Enger PO, , Svendsen F, & Wester K: CSF shunt infections in children: experiences from a population-based study. Acta Neurochir (Wien) 145:243248, 2003

    • Search Google Scholar
    • Export Citation
  • 27

    Enzmann DR, , Marks MP, & Pelc NJ: Comparison of cerebral artery blood flow measurements with gated cine and ungated phase-contrast techniques. J Magn Reson Imaging 3:705712, 1993

    • Search Google Scholar
    • Export Citation
  • 28

    Evans AJ, , Iwai F, , Grist TA, , Sostman HD, , Hedlund LW, & Spritzer CE, : Magnetic resonance imaging of blood flow with a phase subtraction technique. In vitro and in vivo validation. Invest Radiol 28:109115, 1993

    • Search Google Scholar
    • Export Citation
  • 29

    Firmin DN, , Nayler GL, , Klipstein RH, , Underwood SR, , Rees RS, & Longmore DB: In vivo validation of MR velocity imaging. J Comput Assist Tomogr 11:751756, 1987

    • Search Google Scholar
    • Export Citation
  • 30

    Forbes KP, , Pipe JG, & Bird CR: Changes in brain water diffusion during the 1st year of life. Radiology 222:405409, 2002

  • 31

    Goh D, , Minns RA, , Hendry GM, , Thambyayah M, & Steers AJ: Cerebrovascular resistive index assessed by duplex Doppler sonography and its relationship to intracranial pressure in infantile hydrocephalus. Pediatr Radiol 22:246250, 1992

    • Search Google Scholar
    • Export Citation
  • 32

    Gupta N, , Park J, , Solomon C, , Kranz DA, , Wrensch M, & Wu YW: Long-term outcomes in patients with treated childhood hydrocephalus. J Neurosurg 106:5 Suppl 334339, 2007

    • Search Google Scholar
    • Export Citation
  • 33

    Hanlo PW, , Gooskens RH, , Faber JA, , Peters RJ, , Hermsen AA, & Nijhuis IJ, : Relationship between anterior fontanelle pressure measurements and clinical signs in infantile hydrocephalus. Childs Nerv Syst 12:200209, 1996

    • Search Google Scholar
    • Export Citation
  • 34

    Hochwald GM, , Sahar A, , Sadik AR, & Ransohoff J: Cerebrospinal fluid production and histological observations in animals with experimental obstructive hydrocephalus. Exp Neurol 25:190199, 1969

    • Search Google Scholar
    • Export Citation
  • 35

    Kaiser AM, & Whitelaw AG: Normal cerebrospinal fluid pressure in the newborn. Neuropediatrics 17:100102, 1986

  • 36

    Kim E, , Na DG, , Kim EY, , Kim JH, , Son KR, & Chang KH: MR imaging of metronidazole-induced encephalopathy: lesion distribution and diffusion-weighted imaging findings. AJNR Am J Neuroradiol 28:16521658, 2007

    • Search Google Scholar
    • Export Citation
  • 37

    Kirkpatrick M, , Engleman H, & Minns RA: Symptoms and signs of progressive hydrocephalus. Arch Dis Child 64:124128, 1989

  • 38

    Kondo C, , Caputo GR, , Semelka R, , Foster E, , Shimakawa A, & Higgins CB: Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: in vitro and in vivo validation. AJR Am J Roentgenol 157:916, 1991

    • Search Google Scholar
    • Export Citation
  • 39

    Kulkarni AV, , Drake JM, & Lamberti-Pasculli M: Cerebrospinal fluid shunt infection: a prospective study of risk factors. J Neurosurg 94:195201, 2001

    • Search Google Scholar
    • Export Citation
  • 40

    Kulkarni AV, & Shams I: Quality of life in children with hydrocephalus: results from the Hospital for Sick Children, Toronto. J Neurosurg 107:5 Suppl 358364, 2007

    • Search Google Scholar
    • Export Citation
  • 41

    Langley JM, , LeBlanc JC, , Drake J, & Milner R: Efficacy of antimicrobial prophylaxis in placement of cerebrospinal fluid shunts: meta-analysis. Clin Infect Dis 17:98103, 1993

    • Search Google Scholar
    • Export Citation
  • 42

    Leenders KL, , Perani D, , Lammertsma AA, , Heather JD, , Buckingham P, & Healy MJ, : Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113:2747, 1990

    • Search Google Scholar
    • Export Citation
  • 43

    Leliefeld PH, , Gooskens RHJM, , Braun KPJ, , Ramos LMP, , Uiterwaal CSP, & Regli LPE, : Longitudinal diffusion-weighted imaging in infants with hydrocephalus: decrease in tissue water diffusion after cerebrospinal fluid diversion. Clinical article. J Neurosurg Pediatr 4:5663, 2009

    • Search Google Scholar
    • Export Citation
  • 44

    Leliefeld PH, , Gooskens RHJM, , Vincken KL, , Ramos LMP, , van der Grond J, & Tulleken CAF, : Magnetic resonance imaging for quantitative flow measurement in infants with hydrocephalus: a prospective study. J Neurosurg Pediatr 2:163170, 2008

    • Search Google Scholar
    • Export Citation
  • 45

    Levine RL, , Turski PA, , Holmes KA, & Grist TM: Comparison of magnetic resonance volume flow rates, angiography, and carotid Dopplers. Preliminary results. Stroke 25:413417, 1994

    • Search Google Scholar
    • Export Citation
  • 46

    Mikulis DJ: Functional cerebrovascular imaging in brain ischemia: permeability, reactivity, and functional MR imaging. Neuroimaging Clin N Am 15:667680, xii, 2005

    • Search Google Scholar
    • Export Citation
  • 47

    Minns RA, , Engleman HM, & Stirling H: Cerebrospinal fluid pressure in pyogenic meningitis. Arch Dis Child 64:814820, 1989

  • 48

    Miyaoka M, , Ito M, , Wada M, , Sato K, & Ishii S: Measurement of local cerebral glucose utilization before and after V-P shunt in congenital hydrocephalus in rats. Metab Brain Dis 3:125132, 1988

    • Search Google Scholar
    • Export Citation
  • 49

    Nakada J, , Oka N, , Nagahori T, , Endo S, & Takaku A: Changes in the cerebral vascular bed in experimental hydrocephalus: an angio-architectural and histological study. Acta Neurochir (Wien) 114:4350, 1992

    • Search Google Scholar
    • Export Citation
  • 50

    Nejat F, , Tajik P, , El Khashab M, , Kazmi SS, , Khotaei GT, & Salahesh S: A randomized trial of ceftriaxone versus trimethoprim-sulfamethoxazole to prevent ventriculoperitoneal shunt infection. J Microbiol Immunol Infect 41:112117, 2008

    • Search Google Scholar
    • Export Citation
  • 51

    Nonaka Y, , Miyajima M, , Ogino I, , Nakajima M, & Arai H: Analysis of neuronal cell death in the cerebral cortex of H-Tx rats with compensated hydrocephalus. Laboratory investigation. J Neurosurg Pediatr 1:6874, 2008

    • Search Google Scholar
    • Export Citation
  • 52

    Oi S, & Di Rocco C: Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 22:662669, 2006

    • Search Google Scholar
    • Export Citation
  • 53

    Pelc LR, , Pelc NJ, , Rayhill SC, , Castro LJ, , Glover GH, & Herfkens RJ, : Arterial and venous blood flow: noninvasive quantitation with MR imaging. Radiology 185:809812, 1992

    • Search Google Scholar
    • Export Citation
  • 54

    Peters RJ, , Hanlo PW, , Gooskens RH, , Braun KP, , Tulleken CA, & Willemse J: Non-invasive ICP monitoring in infants: the Rotterdam Teletransducer revisited. Childs Nerv Syst 11:207213, 1995

    • Search Google Scholar
    • Export Citation
  • 55

    Piatt JH Jr, & Garton HJ: Clinical diagnosis of ventriculoperitoneal shunt failure among children with hydrocephalus. Pediatr Emerg Care 24:201210, 2008

    • Search Google Scholar
    • Export Citation
  • 56

    Plandsoen WC, , de Jong DA, , Maas AI, , Stroink H, & Avezaat CJ: Fontanelle pressure monitoring in infants with the Rotterdam Teletransducer: a reliable technique. Med Prog Technol 13:2127, 1987

    • Search Google Scholar
    • Export Citation
  • 57

    Radmanesh F, , Nejat F, , El Khashab M, , Ghodsi SM, & Ardebili HE: Shunt complications in children with myelomeningocele: effect of timing of shunt placement. Clinical article. J Neurosurg Pediatr 3:516520, 2009

    • Search Google Scholar
    • Export Citation
  • 58

    Rutgers DR, , Blankensteijn JD, & van der Grond J: Preoperative MRA flow quantification in CEA patients: flow differences between patients who develop cerebral ischemia and patients who do not develop cerebral ischemia during cross-clamping of the carotid artery. Stroke 31:30213028, 2000

    • Search Google Scholar
    • Export Citation
  • 59

    Saadoun S, , Papadopoulos M, , Bell B, , Krishna S, & Davies D: The aquaporin-4 water channel and brain tumour oedema. J Anat 200:528, 2002

  • 60

    Schick RW, & Matson DD: What is arrested hydrocephalus?. J Pediatr 58:791799, 1961

  • 61

    Smith SM: Fast robust automated brain extraction. Hum Brain Mapp 17:143155, 2002

  • 62

    Spilt A, , Box FM, , van der Geest RJ, , Reiber JH, , Kunz P, & Kamper AM, : Reproducibility of total cerebral blood flow measurements using phase contrast magnetic resonance imaging. J Magn Reson Imaging 16:15, 2002

    • Search Google Scholar
    • Export Citation
  • 63

    Spritzer CE, , Pelc NJ, , Lee JN, , Evans AJ, , Sostman HD, & Riederer SJ: Rapid MR imaging of blood flow with a phase-sensitive, limited-flip-angle, gradient recalled pulse sequence: preliminary experience. Radiology 176:255262, 1990

    • Search Google Scholar
    • Export Citation
  • 64

    Tourdias T, , Dragonu I, , Fushimi Y, , Deloire MS, , Boiziau C, & Brochet B, : Aquaporin 4 correlates with apparent diffusion coefficient and hydrocephalus severity in the rat brain: a combined MRI-histological study. Neuroimage 47:659666, 2009

    • Search Google Scholar
    • Export Citation
  • 65

    Tuli S, , Drake J, & Lamberti-Pasculli M: Long-term outcome of hydrocephalus management in myelomeningoceles. Childs Nerv Syst 19:286291, 2003

    • Search Google Scholar
    • Export Citation
  • 66

    Tuli S, , Drake J, , Lawless J, , Wigg M, & Lamberti-Pasculli M: Risk factors for repeated cerebrospinal shunt failures in pediatric patients with hydrocephalus. J Neurosurg 92:3138, 2000

    • Search Google Scholar
    • Export Citation
  • 67

    van der Knaap MS, & Valk J: MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 31:459470, 1990

    • Search Google Scholar
    • Export Citation
  • 68

    Vanninen R, , Koivisto K, , Tulla H, , Manninen H, & Partanen K: Hemodynamic effects of carotid endarterectomy by magnetic resonance flow quantification. Stroke 26:8489, 1995

    • Search Google Scholar
    • Export Citation
  • 69

    Vanninen RL, , Manninen HI, , Partanen PL, , Vainio PA, & Soimakallio S: Carotid artery stenosis: clinical efficacy of MR phase-contrast flow quantification as an adjunct to MR angiography. Radiology 194:459467, 1995

    • Search Google Scholar
    • Export Citation
  • 70

    Vernooij MW, , van der Lugt A, , Ikram MA, , Wielopolski PA, , Vrooman HA, & Hofman A, : Total cerebral blood flow and total brain perfusion in the general population: The Rotterdam Scan Study. J Cereb Blood Flow Metab 28:412419, 2008

    • Search Google Scholar
    • Export Citation
  • 71

    Vinchon M, & Dhellemmes P: Cerebrospinal fluid shunt infection: risk factors and long-term follow-up. Childs Nerv Syst 22:692697, 2006

  • 72

    Volpe JJ: Intracranial hemorrhage in the newborn: current understanding and dilemmas. Neurology 29:632635, 1979

  • 73

    Wu Y, , Green NL, , Wrensch MR, , Zhao S, & Gupta N: Ventriculoperitoneal shunt complications in California: 1990 to 2000. Neurosurgery 61:557563, 2007

    • Search Google Scholar
    • Export Citation
  • 74

    Xenos C, , Sgouros S, & Natarajan K: Ventricular volume change in childhood. J Neurosurg 97:584590, 2002

  • 75

    Yordy M, & Hanigan WC: Cerebral perfusion pressure in the high-risk premature infant. Pediatr Neurosci 12:226231, 1986

  • 76

    Zhao M, , Amin-Hanjani S, , Ruland S, , Curcio AP, , Ostergren L, & Charbel FT: Regional cerebral blood flow using quantitative MR angiography. AJNR Am J Neuroradiol 28:14701473, 2007

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 365 196 5
Full Text Views 66 11 0
PDF Downloads 88 8 0
EPUB Downloads 0 0 0