Clinical impact of integrating positron emission tomography during surgery in 85 children with brain tumors

Clinical article

Benoit J. M. Pirotte M.D., Ph.D.1, Alphonse Lubansu M.D.1, Nicolas Massager M.D., Ph.D.1, David Wikler M.Sc.1, Patrick Van Bogaert M.D., Ph.D.2, Marc Levivier M.D., Ph.D.1, Jacques Brotchi M.D., Ph.D.1, and Serge Goldman M.D., Ph.D.3
View More View Less
  • 1 Departments of Neurosurgery,
  • | 2 Neuropediatrics, and
  • | 3 PET/Cyclotron Biomedical Unit, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

Object

In this paper, the authors' goal was to evaluate the impact of PET information on brain tumor surgery in children.

Methods

Between 1995 and 2007, 442 children were referred to the authors' institution for a newly diagnosed brain lesion. Of these, 85 were studied with FDG-PET and/or L-(methyl-11C)-methionine –PET in cases in which MR images were unable to assist in selecting accurate biopsy targets (35 patients) or to delineate tumors for maximal resection (50 patients). In surgical cases, PET and MR images were combined in image fusion planning for stereotactic biopsies or navigation-based resections. The preoperative planning images were compared postoperatively with MR imaging and PET findings and histological data for evaluating the clinical impact on the diagnostic yield and tumor resection.

Results

The PET data influenced surgical decisions or procedures in all cases. The use of PET helped to better differentiate indolent from active components in complex lesions (in 12 patients); improved target selection and diagnostic yield of stereotactic biopsies without increasing the sampling; provided additional prognostic information; reduced the amount of tissue needed for biopsy sampling in brainstem lesions (in 20 cases); better delineated lesions that were poorly delineated on MR imaging and that infiltrated functional cortex (in 50 cases); significantly increased the amount of tumor tissue removed in cases in which total resection influenced survival (in 20 cases); guided resection in hypermetabolic areas (in 15 cases); improved early postoperative detection of residual tumor (in 20 cases); avoided unnecessary reoperation (in 5 cases); and supported the decision to undertake early second-look resection (in 8 cases).

Conclusions

The authors found that PET has a significant impact on the surgical decisions and procedures for managing pediatric brain tumors. Further studies may demonstrate whether PET improves outcomes in children.

Abbreviations used in this paper:

DTPA = diethylenetriamine pentaacetic acid; FET = [18F]fluoroethyl-tyrosine; MET = L-(methyl-11C)-methionine.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Alavi JB, , Alavi A, , Chawluk J, , Kushner M, , Powe J, & Hickey W, et al.: Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62:10741078, 1988

    • Search Google Scholar
    • Export Citation
  • 2

    Albright AL: Diffuse brainstem tumors: when is a biopsy necessary?. Pediatr Neurosurg 24:252255, 1996

  • 3

    Albright AL: Pediatric brain tumors. CA Cancer J Clin 43:272288, 1993

  • 4

    Becherer A, , Karanikas G, , Szabó M, , Zettinig G, , Asenbaum S, & Marosi C, et al.: Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 30:15611567, 2003

    • Search Google Scholar
    • Export Citation
  • 5

    Bergström M, , Ericson K, , Hagenfeldt L, , Mosskin M, , von Holst H, & Norén G, et al.: PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids. J Comput Assist Tomogr 11:208213, 1987

    • Search Google Scholar
    • Export Citation
  • 6

    Borgwardt L, , Højgaard L, , Carstensen H, , Laursen H, , Nowak M, & Thomsen C, et al.: Increased fluorine-18 2-fluoro-2-deoxy-Dglucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol 23:30303037, 2005

    • Search Google Scholar
    • Export Citation
  • 7

    Bowers DC, , Krause TP, , Aronson LJ, , Barzi A, , Burger PC, & Carson BS, et al.: Second surgery for recurrent pilocytic astrocytoma in children. Pediatr Neurosurg 34:229234, 2001

    • Search Google Scholar
    • Export Citation
  • 8

    Chandrasoma PT, , Smith MM, & Apuzzo MLJ: Stereotactic biopsy in the diagnosis of brain masses: comparison of results of biopsy and resected surgical specimen. Neurosurgery 24:160165, 1989

    • Search Google Scholar
    • Export Citation
  • 9

    Cohen KJ, , Broniscer A, & Glod J: Pediatric glial tumors. Curr Treat Options Oncol 2:529536, 2001

  • 10

    De Witte O, , Goldberg I, , Wikler D, , Rorive S, , Damhaut P, & Monclus M, et al.: Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95:746750, 2001

    • Search Google Scholar
    • Export Citation
  • 11

    De Witte O, , Lefranc F, , Levivier M, , Salmon I, , Brotchi J, & Goldman S: FDG-PET as a prognostic factor in high-grade astrocytoma. J Neurooncol 49:157163, 2000

    • Search Google Scholar
    • Export Citation
  • 12

    De Witte O, , Levivier M, , Violon P, , Salmon I, , Damhaut P, & Wikler D Jr, et al.: Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 39:470477, 1996

    • Search Google Scholar
    • Export Citation
  • 13

    Di Chiro G: Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 22:360371, 1987

    • Search Google Scholar
    • Export Citation
  • 14

    Essig M, , Metzner R, , Bonsanto M, , Hawighorst H, , Debus J, & Tronnier V, et al.: Postoperative fluid-attenuated inversion recovery MR imaging of cerebral gliomas: initial results. Eur Radiol 11:20042010, 2001

    • Search Google Scholar
    • Export Citation
  • 15

    Garty I, , Delbeke D, & Sandler MP: Correlative pediatric imaging. J Nucl Med 30:1524, 1989

  • 16

    Goldman S, , Levivier M, , Pirotte B, , Brucher JM, , Wikler D, & Damhaut P, et al.: Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38:14591462, 1997

    • Search Google Scholar
    • Export Citation
  • 17

    Hess KR: Extent of resection as a prognostic variable in the treatment of gliomas. J Neurooncol 42:227231, 1999

  • 18

    Kaschten B, , Stevenaert A, , Sadzot B, , Deprez M, , Degueldre C, & Del Fiore G, et al.: Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778785, 1998

    • Search Google Scholar
    • Export Citation
  • 19

    Khan RB, , Sanford RA, , Kun LE, & Thompson SJ: Morbidity of second-look surgery in pediatric central nervous system tumors. Pediatr Neurosurg 35:225229, 2001

    • Search Google Scholar
    • Export Citation
  • 20

    Levivier M, , Goldman S, , Bidaut LM, , Luxen A, , Stanus E, & Przedborski S, et al.: Positron emission tomography-guided stereotactic brain biopsy. Neurosurgery 31:792797, 1992

    • Search Google Scholar
    • Export Citation
  • 21

    Levivier M, , Goldman S, , Pirotte B, , Brucher JM, , Balériaux D, & Luxen A, et al.: Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F]fluorodeoxyglucose. J Neurosurg 82:445452, 1995

    • Search Google Scholar
    • Export Citation
  • 22

    Levivier M, , Massager N, , Wikler D, , Lorenzoni J, , Ruiz S, & Devriendt D, et al.: Use of stereotactic PET images in dosimetry planning of radiosurgery for brain tumors: clinical experience and proposed classification. J Nucl Med 45:11461154, 2004

    • Search Google Scholar
    • Export Citation
  • 23

    Mosskin M, , von Holst H, , Bergström M, , Collins VP, , Eriksson L, & Johnström P, et al.: Positron emission tomography with 11C-methionine and computed tomography of intracranial tumours compared with histopathologic examination of multiple biopsies. Acta Radiol 28:673681, 1987

    • Search Google Scholar
    • Export Citation
  • 24

    Oser AB, , Moran CJ, , Kaufman BA, & Park TS: Intracranial tumor in children: MR imaging findings within 24 hours of craniotomy. Radiology 205:807812, 1997

    • Search Google Scholar
    • Export Citation
  • 25

    Patronas NJ, , Brooks RA, , DeLaPaz RL, , Smith BH, , Kornblith PL, & Di Chiro G: Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. AJNR Am J Neuroradiol 4:533535, 1983

    • Search Google Scholar
    • Export Citation
  • 26

    Pauleit D, , Floeth F, , Hamacher K, , Riemenschneider MJ, , Reifenberger G, & Müller HW, et al.: O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678687, 2005

    • Search Google Scholar
    • Export Citation
  • 27

    Paulino AC, , Wen BC, , Buatti JM, , Hussey DH, , Zhen WK, & Mayr NA, et al.: Intracranial ependymomas: an analysis of prognostic factors and patterns of failure. Am J Clin Oncol 25:117122, 2002

    • Search Google Scholar
    • Export Citation
  • 28

    Paulus W, & Peiffer J: Intratumoral histologic heterogeneity of gliomas. A quantitative study. Cancer 64:442447, 1989

  • 29

    Pirotte B, , Acerbi F, , Lubansu A, , Goldman S, , Brotchi J, & Levivier M: PET imaging in the surgical management of pediatric brain tumors. Childs Nerv Syst 23:739751, 2007

    • Search Google Scholar
    • Export Citation
  • 30

    Pirotte B, , Goldman S, , Dewitte O, , Massager N, , Wikler D, & Lefranc F, et al.: Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J Neurosurg 104:238253, 2006

    • Search Google Scholar
    • Export Citation
  • 31

    Pirotte B, , Goldman S, , Massager N, , David P, , Wikler D, & Vandesteene A, et al.: Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45:12931298, 2004

    • Search Google Scholar
    • Export Citation
  • 32

    Pirotte B, , Goldman S, , Salzberg S, , Wikler D, , David P, & Vandesteene A, et al.: Combined positron emission tomography and magnetic resonance imaging for the planning of stereotactic brain biopsies in children: experience in 9 cases. Pediatr Neurosurg 38:146155, 2003

    • Search Google Scholar
    • Export Citation
  • 33

    Pirotte B, , Goldman S, , Van Bogaert P, , David P, , Wikler D, & Rorive S, et al.: Integration of [11C]methionine-positron emission tomography and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery 57:128139, 2005

    • Search Google Scholar
    • Export Citation
  • 34

    Pirotte B, , Levivier M, , Morelli D, , Van Bogaert P, , Detemmerman D, & David P, et al.: Positron emission tomography for the early postsurgical evaluation of pediatric brain tumors. Childs Nerv Syst 21:294300, 2005

    • Search Google Scholar
    • Export Citation
  • 35

    Pirotte B, , Lubansu A, , Massager N, , Wikler D, , Goldman S, & Levivier M: Results of positron emission tomography guidance and reassessment of the utility of and indications for stereotactic biopsy in children with infiltrative brainstem tumors. J Neurosurg 107:5 Suppl 392399, 2007

    • Search Google Scholar
    • Export Citation
  • 36

    Pirotte BJM, , Lubansu A, , Massager N, , Wikler D, , Van Bogaert P, & Levivier M, et al.: Clinical interest of integrating positron emission tomography imaging in the workup of 55 children with incidentally diagnosed brain lesions. Clinical article. J Neurosurg Pediatr 5:479485, 2010

    • Search Google Scholar
    • Export Citation
  • 37

    Sasaki M, , Kuwabara Y, , Yoshida T, , Fukumura T, , Morioka T, & Nishio S, et al.: Carbon-11-methionine PET in focal cortical dysplasia: a comparison with fluorine-18-FDG PET and technetium-99m-ECD SPECT. J Nucl Med 39:974977, 1998

    • Search Google Scholar
    • Export Citation
  • 38

    Utriainen M, , Metsähonkala L, , Salmi TT, , Utriainen T, , Kalimo H, & Pihko H, et al.: Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 95:13761386, 2002

    • Search Google Scholar
    • Export Citation
  • 39

    Weber WA, , Wester HJ, , Grosu AL, , Herz M, , Dzewas B, & Feldmann HJ, et al.: O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C] methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27:542549, 2000

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 705 101 7
Full Text Views 99 12 0
PDF Downloads 96 10 0
EPUB Downloads 0 0 0