Longitudinal comparison of pre- and postoperative diffusion tensor imaging parameters in young children with hydrocephalus

Clinical article

Ellen L. AirDepartments of Pediatric Neurosurgery,
Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio

Search for other papers by Ellen L. Air in
jns
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Weihong YuanRadiology: Pediatric Neuroimaging Research Consortium,

Search for other papers by Weihong Yuan in
jns
Google Scholar
PubMed
Close
 Ph.D.
,
Scott K. HollandRadiology: Pediatric Neuroimaging Research Consortium,

Search for other papers by Scott K. Holland in
jns
Google Scholar
PubMed
Close
 Ph.D.
,
Blaise V. JonesNeuroradiology, and

Search for other papers by Blaise V. Jones in
jns
Google Scholar
PubMed
Close
 M.D.
,
Karin BierbrauerDepartments of Pediatric Neurosurgery,
Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio

Search for other papers by Karin Bierbrauer in
jns
Google Scholar
PubMed
Close
 M.D.
,
Mekibib AltayeBiostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center; and

Search for other papers by Mekibib Altaye in
jns
Google Scholar
PubMed
Close
 Ph.D.
, and
Francesco T. ManganoDepartments of Pediatric Neurosurgery,
Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio

Search for other papers by Francesco T. Mangano in
jns
Google Scholar
PubMed
Close
 D.O.
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

Object

The goal in this study was to compare the integrity of white matter before and after ventriculoperitoneal (VP) shunt insertion by evaluating the anisotropic diffusion properties with the aid of diffusion tensor (DT) imaging in young children with hydrocephalus.

Methods

The authors retrospectively identified 10 children with hydrocephalus who underwent both pre- and postoperative DT imaging studies. The DT imaging parameters (fractional anisotropy [FA], mean diffusivity, axial diffusivity, and radial diffusivity) were computed and compared longitudinally in the splenium and genu of the corpus callosum (gCC) and in the anterior and posterior limbs of the internal capsule (PLIC). The patients' values on DT imaging at the pre- and postshunt stages were compared with the corresponding age-matched controls as well as with a large cohort of healthy children in the database.

Results

In the gCC, 7 of 10 children had abnormally low preoperative FA values, 6 of which normalized postoperatively. All 3 of the 10 children who had normal preoperative FA values had normal FA values postoperatively as well. In the PLIC, 7 of 10 children had abnormally high FA values, 6 of which normalized postoperatively, whereas the other one had abnormally low postoperative FA. Of the remaining 3 children, 2 had abnormally low preoperative FA values in the PLIC; this normalized in 1 patient after surgery. The other child had a normal preoperative FA value that became abnormally low postoperatively. When comparing the presurgery frequency of abnormally low, normal, and abnormally high FA values to those postsurgery, there was a statistically significant longitudinal difference in both gCC (p = 0.02) and PLIC (p = 0.002).

Conclusions

In this first longitudinal DT imaging study of young children with hydrocephalus, DT imaging anisotropy yielded abnormal results in several white matter regions of the brain, and trended toward normalization following VP shunt placement.

Abbreviations used in this paper:

ALIC = anterior limb of the internal capsule; bCC = body of the corpus callosum; CCHMC = Cincinnati Children's Hospital Medical Center; DT = diffusion tensor; FA = fractional anisotropy; gCC = genu of the corpus callosum; PLIC = posterior limb of the internal capsule; ROI = region of interest; sCC = splenium of the corpus callosum.
  • Collapse
  • Expand
  • 1

    Assaf Y, , Ben-Sira L, , Constantini S, , Chang LC, & Beni-Adani L: Diffusion tensor imaging in hydrocephalus: initial experience. AJNR Am J Neuroradiol 27:17171724, 2006

    • Search Google Scholar
    • Export Citation
  • 2

    Bammer R, , Augustin M, , Strasser-Fuchs S, , Seifert T, , Kapeller P, & Stollberger R, et al.: Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis. Magn Reson Med 44:583591, 2000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Basser PJ, & Pierpaoli C: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209219, 1996

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Cascio CJ, , Gerig G, & Piven J: Diffusion tensor imaging: application to the study of the developing brain. J Am Acad Child Adolesc Psychiatry 46:213223, 2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Del Bigio MR: Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573585, 1993

  • 6

    Del Bigio MR, , da Silva MC, , Drake JM, & Tuor UI: Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Can J Neurol Sci 21:299305, 1994

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Del Bigio MR, , Wilson MJ, & Enno T: Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol 53:337346, 2003

  • 8

    Ding XQ, , Sun Y, , Braass H, , Illies T, , Zeumer H, & Lanfermann H, et al.: Evidence of rapid ongoing brain development beyond 2 years of age detected by fiber tracking. AJNR Am J Neuroradiol 29:12611265, 2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Dreha-Kulaczewski S, , Dechent P, , Helms G, , Frahm J, , Gärtner J, & Brockmann K: Cerebral metabolic and structural alterations in hereditary spastic paraplegia with thin corpus callosum assessed by MRS and DTI. Neuroradiology 48:893898, 2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Ewing-Cobbs L, , Prasad MR, , Swank P, , Kramer L, , Cox CS Jr, & Fletcher JM, et al.: Arrested development and disrupted callosal microstructure following pediatric traumatic brain injury: relation to neurobehavioral outcomes. Neuroimage 42:13051315, 2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Freeman GH, & Halton JH: Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika 38:141149, 1951

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Gao W, , Lin W, , Chen Y, , Gerig G, , Smith JK, & Jewells V, et al.: Temporal and spatial development of axonal maturation and myelination of white matter in the developing brain. AJNR Am J Neuroradiol 30:290296, 2008

    • Search Google Scholar
    • Export Citation
  • 13

    Gilmore JH, , Lin W, , Corouge I, , Vetsa YS, , Smith JK, & Kang C, et al.: Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography. AJNR Am J Neuroradiol 28:17891795, 2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Hasan KM, , Eluvathingal TJ, , Kramer LA, , Ewing-Cobbs L, , Dennis M, & Fletcher JM: White matter microstructural abnormalities in children with spina bifida myelomeningocele and hydrocephalus: a diffusion tensor tractography study of the association pathways. J Magn Reson Imaging 27:700709, 2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Hasan KM, , Sankar A, , Halphen C, , Kramer LA, , Ewing-Cobbs L, & Dennis M, et al.: Quantitative diffusion tensor imaging and intellectual outcomes in spina bifida. Laboratory investigation. J Neurosurg Pediatr 2:7582, 2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Hermoye L, , Saint-Martin C, , Cosnard G, , Lee SK, , Kim J, & Nassogne MC, et al.: Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage 29:493504, 2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Herweh C, , Akbar M, , Wengenroth M, , Blatow M, , Mair-Walther J, & Rehbein N, et al.: DTI of commissural fibers in patients with Chiari II-malformation. Neuroimage 44:306311, 2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Jiang H, , van Zijl PC, , Kim J, , Pearlson GD, & Mori S: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 81:106116, 2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Khong PL, , Leung LH, , Fung AS, , Fong DY, , Qiu D, & Kwong DL, et al.: White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol 24:884890, 2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Leliefeld PH, , Gooskens RHJM, , Braun KPJ, , Ramos LMP, , Uiterwaal CSP, & Regli LPE, et al.: Longitudinal diffusion-weighted imaging in infants with hydrocephalus: decrease in tissue water diffusion after cerebrospinal fluid diversion. Clinical article. J Neurosurg Pediatr 4:5663, 2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Mataró M, , Junqué C, , Poca MA, & Sahuquillo J: Neuropsychological findings in congenital and acquired childhood hydrocephalus. Neuropsychol Rev 11:169178, 2001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Pierpaoli C, & Basser PJ: Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893906, 1996

  • 23

    Qiu D, , Tan LH, , Zhou K, & Khong PL: Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development. Neuroimage 41:223232, 2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Rose J, , Mirmiran M, , Butler EE, , Lin CY, , Barnes PD, & Kermoian R, et al.: Neonatal microstructural development of the internal capsule on diffusion tensor imaging correlates with severity of gait and motor deficits. Dev Med Child Neurol 49:745750, 2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Saksena S, , Husain N, , Malik GK, , Trivedi R, , Sarma M, & Rathore RS, et al.: Comparative evaluation of the cerebral and cerebellar white matter development in pediatric age group using quantitative diffusion tensor imaging. Cerebellum 7:392400, 2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Schmithorst VJ, , Wilke M, , Dardzinski BJ, & Holland SK: Cognitive functions correlate with white matter architecture in a normal pediatric population: a diffusion tensor MRI study. Hum Brain Mapp 26:139147, 2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Song SK, , Sun SW, , Ju WK, , Lin SJ, , Cross AH, & Neufeld AH: Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20:17141722, 2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    van Engelen SJ, , Krab LC, , Moll HA, , de Goede-Bolder A, , Pluijm SM, & Catsman-Berrevoets CE, et al.: Quantitative differentiation between healthy and disordered brain matter in patients with neurofibromatosis type I using diffusion tensor imaging. AJNR Am J Neuroradiol 29:816822, 2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Werring DJ, , Clark CA, , Barker GJ, , Thompson AJ, & Miller DH: Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52:16261632, 1999

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Werring DJ, , Toosy AT, , Clark CA, , Parker GJ, , Barker GJ, & Miller DH, et al.: Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J Neurol Neurosurg Psychiatry 69:269272, 2000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Wilde EA, , Chu Z, , Bigler ED, , Hunter JV, , Fearing MA, & Hanten G, et al.: Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. J Neurotrauma 23:14121426, 2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Wozniak JR, , Krach L, , Ward E, , Mueller BA, , Muetzel R, & Schnoebelen S, et al.: Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: a diffusion tensor imaging (DTI) study. Arch Clin Neuropsychol 22:555568, 2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Yuan W, , Holland SK, , Jones BV, , Crone K, & Mangano FT: Characterization of abnormal diffusion properties of supratentorial brain tumors: a preliminary diffusion tensor imaging study. J Neurosurg Pediatr 1:263269, 2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Yuan W, , Holland SK, , Schmithorst VJ, , Walz NC, , Cecil KM, & Jones BV, et al.: Diffusion tensor MR imaging reveals persistent white matter alteration after traumatic brain injury experienced during early childhood. AJNR Am J Neuroradiol 28:19191925, 2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Yuan W, , Mangano FT, , Air EL, , Holland SK, , Jones BV, & Altaye M, et al.: Anisotropic diffusion properties in infants with hydrocephalus: a diffusion-tensor imaging study. AJNR Am J Neuroradiol 30:17921798, 2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Yung A, , Poon G, , Qiu DQ, , Chu J, , Lam B, & Leung C, et al.: White matter volume and anisotropy in preterm children: a pilot study of neurocognitive correlates. Pediatr Res 61:732736, 2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Zelaya F, , Flood N, , Chalk JB, , Wang D, , Doddrell DM, & Strugnell W, et al.: An evaluation of the time dependence of the anisotropy of the water diffusion tensor in acute human ischemia. Magn Reson Imaging 17:331348, 1999

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 621 104 11
Full Text Views 159 4 0
PDF Downloads 103 8 1
EPUB Downloads 0 0 0