Longitudinal diffusion-weighted imaging in infants with hydrocephalus: decrease in tissue water diffusion after cerebrospinal fluid diversion

Clinical article

View More View Less
  • 1 Rudolf Magnus Institute of Neuroscience,
  • 2 Departments of Neurosurgery,
  • 3 Child Neurology,
  • 4 Radiology, and
  • 6 Neurology; and
  • 5 Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object

Progressive hydrocephalus may lead to edema of the periventricular white matter and to damage of the brain parenchyma because of compression, stretching, and ischemia. The aim of the present study was to investigate whether cerebral edema can be quantified using diffusion-weighted imaging in infants with hydrocephalus and whether CSF diversion could decrease cerebral edema.

Methods

Diffusion-weighted MR imaging was performed in 24 infants with progressive hydrocephalus before and after CSF diversion. Parametric images of the trace apparent diffusion coefficients (ADCs) were obtained. The ADCs of 5 different cortical and subcortical regions of interest were calculated pre- and postoperatively in each patient. The ADC values were compared with age-related normal values. Mean arterial blood pressure and anterior fontanel pressure were measured immediately after each MR imaging study.

Results

After CSF diversion, the mean ADC decreased from a preoperative value of 1209 ± 116 × 10−6 mm2/second to a postoperative value of 928 ± 64 × 10−6 mm2/second (p < 0.005). Differences between pre- and postoperative ADC values were most prominent in the periventricular white matter, supporting the existence of preoperative periventricular edema. Compared with age-related normal values, the preoperative ADC values were higher and the postoperative ADC values were lower, although within normal range. The decrease in ADC after CSF drainage was more rapid than the more gradual physiological decrease that is related to age.

The preoperative ICP was elevated in all patients. After CSF diversion the ICP decreased significantly to within the normal range. A linear correlation between ADC values and ICP was found (correlation coefficient 0.496, p < 0.001). In all patients the mean arterial blood pressure was within physiological limits both pre- and postoperatively.

Conclusions

This study shows a rapid and more extensive decrease in ADC values after CSF diversion than is to be expected from physiological ADC decrease solely due to increasing patient age. The preoperative ADC increase can be explained by interstitial edema caused by transependymal CSF leakage or by vasogenic edema caused by capillary compression and stretching of the brain parenchyma. This study population of infants with (early recognized) hydrocephalus did not suffer from cytotoxic edema. These findings may help to detect patients at risk for cerebral damage by differentiating between progressive and compensated hydrocephalus.

Abbreviations used in this paper: ADC = apparent diffusion coefficient; AFP = anterior fontanel pressure; CBF = cerebral blood flow; DW = diffusion-weighted; ICP = intracranial pressure; MABP = mean arterial blood pressure; ROI = region of interest.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

† Deceased April 12, 2008.

Address correspondence to: Paul H. Leliefeld, M.D., Department of Neurosurgery, University Medical Center Utrecht, G 03.124, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands. email: p.h.leliefeld@umcutrecht.nl.
  • 1

    Adelson PD, , Clyde B, , Kochanek PM, , Wisniewski SR, , Marion DW, & Yonas H: Cerebrovascular response in infants and young children following severe traumatic brain injury: a preliminary report. Pediatr Neurosurg 26:200207, 1997

    • Search Google Scholar
    • Export Citation
  • 2

    Anegawa S, , Hayashi T, & Torigoe R, Clinical significance of ICP measurement in infants. Part I: Normal intracranial pressure. Matsumoto S, & Tamaki N: Hydrocephalus: Pathogenesis and Treatment New York, Springer-Verlag, 1991. 248256

    • Search Google Scholar
    • Export Citation
  • 3

    Baldauf J, , Oertel J, , Gaab MR, & Schroeder HW: Endoscopic third ventriculostomy in children younger than 2 years of age. Childs Nerv Syst 23:623626, 2007

    • Search Google Scholar
    • Export Citation
  • 4

    Braun KP, , De Graaf RA, , Vandertop WP, , Gooskens RH, , Tulleken CA, & Nicolay K: In vivo 1H MR spectroscopic imaging and diffusion weighted MRI in experimental hydrocephalus. Magn Reson Med 40:832839, 1998

    • Search Google Scholar
    • Export Citation
  • 5

    Braun KP, , Dijkhuizen RM, , de Graaf RA, , Nicolay K, , Vandertop WP, & Gooskens RH, : Cerebral ischemia and white matter edema in experimental hydrocephalus: a combined in vivo MRI and MRS study. Brain Res 757:295298, 1997

    • Search Google Scholar
    • Export Citation
  • 6

    Braun KP, , Gooskens RH, , Vandertop WP, , Tulleken CA, & Van Der Grond J: 1H magnetic resonance spectroscopy in human hydrocephalus. J Magn Reson Imaging 17:291299, 2003

    • Search Google Scholar
    • Export Citation
  • 7

    Counsell SJ, , Allsop JM, , Harrison MC, , Larkman DJ, , Kennea NL, & Kapellou O, : Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 112:17, 2003

    • Search Google Scholar
    • Export Citation
  • 8

    Counsell SJ, , Shen Y, , Boardman JP, , Larkman DJ, , Kapellou O, & Ward P, : Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 117:376386, 2006

    • Search Google Scholar
    • Export Citation
  • 9

    de Jong DA, , den Ouden AH, , van de Boon TA, , Yeskoot F, & Maas A: Telemetered epidural pressure. Biotelemetry 2:257264, 1975

  • 10

    de Jong DA, , Maas AI, , Berfelo MW, , den Ouden AH, & de Lange SA: The Rotterdam teletransducer. A telemetric device for measuring epidural pressure. Biotelem Patient Monit 9:154165, 1982

    • Search Google Scholar
    • Export Citation
  • 11

    de Jong DA, , Maas AI, , den Ouden AH, & de Lange SA: Longterm intracranial pressure monitoring. Med Prog Technol 10:8996, 1984

  • 12

    Del Bigio MR: Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573585, 1993

  • 13

    Dombrowski SM, , Schenk S, , Leichliter A, , Leibson Z, , Fukamachi K, & Luciano MG: Chronic hydrocephalus-induced changes in cerebral blood flow: mediation through cardiac effects. J Cereb Blood Flow Metab 26:12981310, 2006

    • Search Google Scholar
    • Export Citation
  • 14

    Dorenbeck U, , Schlaier J, , Feuerbach S, & Seitz J: [Diffusion-weighted imaging in the diagnostic evaluation of the hydrocephalus in patients with acute or chronic increase in cerebral pressure.]. Rofo 177:99104, 2005. (Ger)

    • Search Google Scholar
    • Export Citation
  • 15

    Ebisu T, , Naruse S, , Horikawa Y, , Ueda S, , Tanaka C, & Uto M, : Discrimination between different types of white matter edema with diffusion-weighted MR imaging. J Magn Reson Imaging 3:863868, 1993

    • Search Google Scholar
    • Export Citation
  • 16

    Erdem G, , Celik O, , Hascalik S, , Karakas HM, , Alkan A, & Firat AK: Diffusion-weighted imaging evaluation of subtle cerebral microstructural changes in intrauterine fetal hydrocephalus. Magn Reson Imaging 25:14171422, 2007

    • Search Google Scholar
    • Export Citation
  • 17

    Forbes KP, , Pipe JG, & Bird CR: Changes in brain water diffusion during the 1st year of life. Radiology 222:405409, 2002

  • 18

    Gass A, , Niendorf T, & Hirsch JG: Acute and chronic changes of the apparent diffusion coefficient in neurological disorders—biophysical mechanisms and possible underlying histopathology. J Neurol Sci 186:Suppl 1 S15S23, 2001

    • Search Google Scholar
    • Export Citation
  • 19

    Gideon P, , Thomsen C, , Gjerris F, , Sorensen PS, & Henriksen O: Increased self-diffusion of brain water in hydrocephalus measured by MR imaging. Acta Radiol 35:514519, 1994

    • Search Google Scholar
    • Export Citation
  • 20

    Hanlo PW, , Gooskens RH, , Faber JAJ, , Peters RJ, , Hermsen AA, & Nijhuis IJ, : Relationship between anterior fontanelle pressure measurements and clinical signs in infantile hydrocephalus. Childs Nerv Syst 12:200209, 1996

    • Search Google Scholar
    • Export Citation
  • 21

    Hanlo PW, , Gooskens RH, , van Schooneveld M, , Tulleken CA, , van der Knaap MS, & Faber JA, : The effect of intracranial pressure on myelination and the relationship with neurodevelopment in infantile hydrocephalus. Dev Med Child Neurol 39:286291, 1997

    • Search Google Scholar
    • Export Citation
  • 22

    Hou DJ, , Tong KA, , Ashwal S, , Oyoyo U, , Joo E, & Shutter L, : Diffusion-weighted magnetic resonance imaging improves outcome prediction in adult traumatic brain injury. J Neurotrauma 24:15581569, 2007

    • Search Google Scholar
    • Export Citation
  • 23

    Inaba H, , Khan RB, , Laningham FH, , Crews KR, , Pui CH, & Daw NC: Clinical and radiological characteristics of methotrexate-induced acute encephalopathy in pediatric patients with cancer. Ann Oncol 19:178184, 2007

    • Search Google Scholar
    • Export Citation
  • 24

    Jorgensen PB, & Riishede J, Comparative clinical studies of epidural and ventricular pressure. Brock M, & Dietz H: Intracranial Pressure Berlin, Springer, 1972. 4145

    • Search Google Scholar
    • Export Citation
  • 25

    Kaiser AM, & Whitelaw AGL: Normal cerebrospinal fluid pressure in the newborn. Neuropediatrics 17:100102, 1986

  • 26

    Kantarci K, & Jack CR Jr: Neuroimaging in Alzheimer disease: an evidence-based review. Neuroimaging Clin N Am 13:197209, 2003

  • 27

    Karahalios DG, , Rekate HL, , Khayata MH, & Apostolides PJ: Elevated intracranial venous pressure as a universal mechanism on pseudotumor cerebri of varying etiologies. Neurology 46:198202, 1996

    • Search Google Scholar
    • Export Citation
  • 28

    Kim E, , Na DG, , Kim EY, , Kim JH, , Son KR, & Chang KH: MR imaging of metronidazole-induced encephalopathy: lesion distribution and diffusion-weighted imaging findings. AJNR Am J Neuroradiol 28:16521658, 2007

    • Search Google Scholar
    • Export Citation
  • 29

    Kirkpatrick M, , Engleman H, & Minns RA: Symptoms and signs of progressive hydrocephalus. Arch Dis Child 64:124128, 1989

  • 30

    Kristensen B, , Malm J, , Fagerland M, , Hietala SO, , Johansson B, & Ekstedt J, : Regional cerebral blood flow, white matter abnormalities, and cerebrospinal fluid hydrodynamics in patients with idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 60:282288, 1996

    • Search Google Scholar
    • Export Citation
  • 31

    Leliefeld PH, , Gooskens RH, , Vincken KL, , Ramos LM, , van der Grond J, & Tulleken CA, : Magnetic resonance imaging for quantitative flow measurement in infants with hydrocephalus: a prospective study. J Neurosurg Pediatr 2:163170, 2008

    • Search Google Scholar
    • Export Citation
  • 32

    Luthra G, , Parihar A, , Nath K, , Jaiswal S, , Prasad KN, & Husain N, : Comparative evaluation of fungal, tubercular, and pyogenic brain abscesses with conventional and diffusion MR imaging and proton MR spectroscopy. AJNR Am J Neuroradiol 28:13321338, 2007

    • Search Google Scholar
    • Export Citation
  • 33

    Mamo HL, , Meric PC, , Ponsin JC, , Rey AC, , Luft AG, & Seylaz JA: Cerebral blood flow in normal pressure hydrocephalus. Stroke 18:10741080, 1987

    • Search Google Scholar
    • Export Citation
  • 34

    Massicotte EM, , Buist R, & Del Bigio MR: Altered diffusion and perfusion in hydrocephalic rat brain: a magnetic resonance imaging analysis. J Neurosurg 92:442447, 2000

    • Search Google Scholar
    • Export Citation
  • 35

    McAllister JP, & Chovan P: Neonatal hydrocephalus. Mechanisms and consequences. Neurosurg Clin N Am 9:7393, 1998

  • 36

    Minns RA, , Engleman HM, & Stirling H: Cerebrospinal fluid pressure in pyogenic meningitis. Arch Dis Child 64:814820, 1989

  • 37

    Moustafa RR, & Baron JC: Clinical review: imaging in ischaemic stroke—implications for acute management. Crit Care 11:227, 2007

  • 38

    Nakada J, , Oka N, , Nagahori T, , Endo S, & Takaku A: Changes in the cerebral vascular bed in experimental hydrocephalus: an angio-architectural and histological study. Acta Neurochir (Wien) 114:4350, 1992

    • Search Google Scholar
    • Export Citation
  • 39

    National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents: The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555576, 2004

    • Search Google Scholar
    • Export Citation
  • 40

    O'Brien TJ, , David EP, , Kilpatrick CJ, , Desmond P, & Tress B: Contrast-enhanced perfusion and diffusion MRI accurately lateralize temporal lobe epilepsy: a pilot study. J Clin Neurosci 14:841849, 2007

    • Search Google Scholar
    • Export Citation
  • 41

    Oi S, & Di Rocco C: Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 22:662669, 2006

    • Search Google Scholar
    • Export Citation
  • 42

    Peters RJ, , Hanlo PW, , Gooskens RH, , Braun KP, , Tulleken CA, & Willemse J: Non-invasive ICP monitoring in infants: the Rotterdam Teletransducer revisited. Childs Nerv Syst 11:207213, 1995

    • Search Google Scholar
    • Export Citation
  • 43

    Plandsoen WC, , de Jong DA, , Maas AI, , Stroink H, & Avezaat CJ: Fontanelle pressure monitoring in infants with the Rotterdam Teletransducer: a reliable technique. Med Prog Technol 13:2127, 1987

    • Search Google Scholar
    • Export Citation
  • 44

    Pronin IN, , Kornienko VN, , Fadeeva LM, , Rodionov PV, & Golanov AV: [Diffusion-weighted image in the study of brain tumors and peritumoral edema.]. Zh Vopr Neirokhir Im N N Burdenko 3:1417, 2000. (Russian)

    • Search Google Scholar
    • Export Citation
  • 45

    Schettini A, , McKay L, , Majors R, , Mahig J, & Nevis AH: Experimental approach for monitoring surface brain pressure. J Neurosurg 34:3847, 1971

    • Search Google Scholar
    • Export Citation
  • 46

    Sotak CH: Nuclear magnetic resonance (NMR) measurement of the apparent diffusion coefficient (ADC) of tissue water and its relationship to cell volume changes in pathological states. Neurochem Int 45:569582, 2004

    • Search Google Scholar
    • Export Citation
  • 47

    Sundbärg G, & Nornes H, Simultaneous recording of the epidural and ventricular fluid pressure. Brock M, & Dietz H: Intracranial Pressure New York, Springer, 1972. 4650

    • Search Google Scholar
    • Export Citation
  • 48

    Tanaka A, , Kimura M, , Nakayama Y, , Yoshinaga S, & Tomonaga M: Cerebral blood flow and autoregulation in normal pressure hydrocephalus. Neurosurgery 40:11611167, 1997

    • Search Google Scholar
    • Export Citation
  • 49

    van Everdingen KJ, , van der Grond J, , Kappelle LJ, , Ramos LM, & Mali WP: Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke 29:17831790, 1998

    • Search Google Scholar
    • Export Citation
  • 50

    van Lindert EJ, , Beems T, & Grotenhuis JA: The role of different imaging modalities: is MRI a condition sine qua non for ETV?. Childs Nerv Syst 22:15291536, 2006

    • Search Google Scholar
    • Export Citation
  • 51

    Volpe JJ: Intracranial hemorrhage: germinal matrix–intraventricular hemorrhage of the premature infant. Neurology of the Newborn ed 4 Philadelphia, WB Saunders, 1995. 457462

    • Search Google Scholar
    • Export Citation
  • 52

    Volpe JJ: Intracranial hemorrhage in the newborn: current understanding and dilemmas. Neurology 29:632635, 1979

  • 53

    Williams H: The venous hypothesis of hydrocephalus. Med Hypotheses 70:743747, 2008

  • 54

    Yikilmaz A, & Taylor GA: Sonographic findings in bacterial meningitis in neonates and young infants. Pediatr Radiol 38:129137, 2008

  • 55

    Yordy M, & Hanigan WC: Cerebral perfusion pressure in the high-risk premature infant. Pediatr Neurosci 12:226231, 1985

Metrics

All Time Past Year Past 30 Days
Abstract Views 401 222 4
Full Text Views 73 6 0
PDF Downloads 45 8 0
EPUB Downloads 0 0 0