Can tumor treating fields induce DNA damage and reduce cell motility in medulloblastoma cell lines?

Ryan T. NittaDepartment of Neurosurgery, Stanford University School of Medicine, Stanford, California

Search for other papers by Ryan T. Nitta in
jns
Google Scholar
PubMed
Close
 PhD
,
Emily J. LuoDepartment of Neurosurgery, Stanford University School of Medicine, Stanford, California

Search for other papers by Emily J. Luo in
jns
Google Scholar
PubMed
Close
 BSc
,
Michael LimDepartment of Neurosurgery, Stanford University School of Medicine, Stanford, California

Search for other papers by Michael Lim in
jns
Google Scholar
PubMed
Close
 MD
, and
Gordon LiDepartment of Neurosurgery, Stanford University School of Medicine, Stanford, California

Search for other papers by Gordon Li in
jns
Google Scholar
PubMed
Close
 MD
View More View Less
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

OBJECTIVE

Medulloblastoma (MB) is the most common malignant pediatric brain tumor and accounts for approximately 20% of all pediatric CNS tumors. Current multimodal treatment is associated with a 70%–90% 5-year survival rate; however, the prognosis for patients with tumor dissemination and recurrent MB remains poor. The majority of survivors exhibit long-term neurocognitive complications; thus, more effective and less toxic treatments are critically needed. Tumor treating fields (TTFields) are low-intensity, alternating electric fields that disrupt cell division through physical interactions with key molecules during mitosis. Side effects from TTField therapy are minimal, making it an ideal candidate for MB treatment.

METHODS

To determine if TTFields can be an effective treatment for MB, the authors conducted an in vitro study treating multiple MB cell lines. Three MB molecular subgroups (SHH [sonic hedgehog], group 3, and group 4) were treated for 24, 48, and 72 hours at 100, 200, 300, and 400 kHz. Combinatorial studies were conducted with the small-molecule casein kinase 2 inhibitor CX-4945.

RESULTS

TTFields reduced MB cell growth with an optimal frequency of 300 kHz, and the most efficacious treatment time was 72 hours. Treatment with TTFields dysregulated actin polymerization and corresponded with a reduction in cell motility and invasion. TTFields also induced DNA damage (γH2AX, 53BP1) that correlated with an increase in apoptotic cells. The authors discovered that CX-4945 works synergistically with TTFields to reduce MB growth. In addition, combining CX-4945 and TTFields increased the cellular actin dysregulation, which correlated with a decrease in MB migration.

CONCLUSIONS

The findings of this study demonstrate that TTFields may be a novel and less toxic method to treat patients with MB.

ABBREVIATIONS

7-AAD = 7-aminoactinomycin D; BBB = blood-brain barrier; CK2 = casein kinase 2; CK2α = CK2 alpha; DMSO = dimethyl sulfoxide; EMT = epithelial-mesenchymal transition; GFP = green fluorescent protein; MB = medulloblastoma; OPC = oligodendrocyte progenitor cell; sgCK2α = specific sgRNA to CSNK2A ; sgCTRL = cell lines transduced with sgRNA to GFP; sgRNA = single-guide RNA; SHH = sonic hedgehog; shRNA = short-hairpin RNA; TTField = tumor treating field.

Supplementary Materials

    • Supplemental Materials and Methods (PDF 2,955 KB)
  • Collapse
  • Expand

Images from Chiang et al. (pp 595–601).

  • 1

    Gajjar A, Chintagumpala M, Ashley D, et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 2006;7(10):813820.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Packer RJ, Gajjar A, Vezina G, et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol. 2006;24(25):42024208.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Mun EJ, Babiker HM, Weinberg U, Kirson ED, Von Hoff DD. Tumor-treating fields: a fourth modality in cancer treatment. Clin Cancer Res. 2018;24(2):266275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Voloshin T, Schneiderman RS, Volodin A, et al. Tumor treating fields (TTFields) hinder cancer cell motility through regulation of microtubule and acting dynamics. Cancers (Basel). 2020;12(10):E3016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Bomzon Z, Naveh A, Levy S, Kirson E, Weinberg U. P01.048. A novel transducer array layout for delivering tumor treating fields to the infratentorial brain at therapeutic levels. Neuro Oncol. 2018;20(3 suppl):iii240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Ramirez-Fort MK, Naveh A, McClelland S III, et al. Computational simulations establish a novel transducer array placement arrangement that extends delivery of therapeutic TTFields to the infratentorium of patients with brainstem gliomas. Rep Pract Oncol Radiother. 2021;26(6):10451050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Kim JY, Jo Y, Oh HK, Kim EH. Sorafenib increases tumor treating fields-induced cell death in glioblastoma by inhibiting STAT3. Am J Cancer Res. 2020;10(10):34753486.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Ghiaseddin AP, Shin D, Melnick K, Tran DD. Tumor treating fields in the management of patients with malignant gliomas. Curr Treat Options Oncol. 2020;21(9):76.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Purzner T, Purzner J, Buckstaff T, et al. Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Sci Signal. 2018;11(547):eaau5147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Olsen BB, Bjørling-Poulsen M, Guerra B. Emodin negatively affects the phosphoinositide 3-kinase/AKT signalling pathway: a study on its mechanism of action. Int J Biochem Cell Biol. 2007;39(1):227237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Zheng Y, McFarland BC, Drygin D, et al. Targeting protein kinase CK2 suppresses prosurvival signaling pathways and growth of glioblastoma. Clin Cancer Res. 2013;19(23):64846494.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Nitta RT, Bolin S, Luo E, et al. Casein kinase 2 inhibition sensitizes medulloblastoma to temozolomide. Oncogene. 2019;38(42):68676879.

  • 13

    Kennedy BK, Barbie DA, Classon M, Dyson N, Harlow E. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev. 2000;14(22):28552868.

  • 14

    Ianevski A, He L, Aittokallio T, Tang J. SynergyFinder: a web application for analyzing drug combination dose-response matrix data. Bioinformatics. 2020;36(8):2645.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res. 2020;48(W1):W488-W493.

  • 16

    Blatt R, Davidi S, Munster M, et al. In vivo safety of tumor treating fields (TTFields) applied to the torso. Front Oncol. 2021;11:670809.

  • 17

    Seim I, Ma S, Gladyshev VN. Gene expression signatures of human cell and tissue longevity. NPJ Aging Mech Dis. 2016;2:16014.

  • 18

    Ye E, Lee JE, Lim YS, Yang SH, Park SM. Effect of duty cycles of tumortreating fields on glioblastoma cells and normal brain organoids. Int J Oncol. 2022;60(1):8.

  • 19

    Giladi M, Munster M, Schneiderman RS, et al. Tumor treating fields (TTFields) delay DNA damage repair following radiation treatment of glioma cells. Radiat Oncol. 2017;12(1):206.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Karanam NK, Ding L, Aroumougame A, Story MD. Tumor treating fields cause replication stress and interfere with DNA replication fork maintenance: implications for cancer therapy. Transl Res. 2020;217:3346.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Mah LJ, El-Osta A, Karagiannis TC. gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24(4):679686.

  • 22

    Jonkman JE, Cathcart JA, Xu F, et al. An introduction to the wound healing assay using live-cell microscopy. Cell Adhes Migr. 2014;8(5):440451.

  • 23

    Vuoriluoto K, Haugen H, Kiviluoto S, et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene. 2011;30(12):14361448.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Krendel M, Gloushankova NA, Bonder EM, Feder HH, Vasiliev JM, Gelfand IM. Myosin-dependent contractile activity of the actin cytoskeleton modulates the spatial organization of cell-cell contacts in cultured epitheliocytes. Proc Natl Acad Sci U S A. 1999;96(17):96669670.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Kramerov AA, Golub AG, Bdzhola VG, et al. Treatment of cultured human astrocytes and vascular endothelial cells with protein kinase CK2 inhibitors induces early changes in cell shape and cytoskeleton. Mol Cell Biochem. 2011;349(1-2):125137.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Davare MA, Lal S, Peckham JL, et al. Secreted meningeal chemokines, but not VEGFA, modulate the migratory properties of medulloblastoma cells. Biochem Biophys Res Commun. 2014;450(1):555560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Riedl J, Crevenna AH, Kessenbrock K, et al. Lifeact: a versatile marker to visualize F-actin. Nat Methods. 2008;5(7):605607.

  • 28

    Xu R, Du S. Overexpression of Lifeact-GFP Disrupts F-actin organization in cardiomyocytes and impairs cardiac function. Front Cell Dev Biol. 2021;9:746818.

  • 29

    Olsen BB, Wang SY, Svenstrup TH, Chen BP, Guerra B. Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage. BMC Mol Biol. 2012;13:7.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Xavier S, Gopi Mohan C, Nair S, Menon KN, Vijayachandran LS. Generation of humanized single-chain fragment variable immunotherapeutic against EGFR variant III using baculovirus expression system and in vitro validation. Int J Biol Macromol. 2019;124:1724.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    D’Amore C, Salizzato V, Borgo C, Cesaro L, Pinna LA, Salvi M. A journey through the cytoskeleton with protein kinase CK2. Curr Protein Pept Sci. 2019;20(6):547562.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Carneiro AC, Fragel-Madeira L, Silva-Neto MA, Linden R. A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells. Dev Neurobiol. 2008;68(5):620631.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Lim AC, Tiu SY, Li Q, Qi RZ. Direct regulation of microtubule dynamics by protein kinase CK2. J Biol Chem. 2004;279(6):44334439.

  • 34

    Etienne-Manneville S. Actin and microtubules in cell motility: which one is in control? Traffic. 2004;5(7):470477.

  • 35

    Rominiyi O, Vanderlinden A, Clenton SJ, Bridgewater C, Al-Tamimi Y, Collis SJ. Tumour treating fields therapy for glioblastoma: current advances and future directions. Br J Cancer. 2021;124(4):697709.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Goldman S, Hwang E, Lai JS, et al. Feasibility trial of TTFields (tumor treating fields) for children with recurrent or progressive supratentorial high-grade glioma (HGG) and ependymoma: a pediatric brain tumor consortium study: Pbtc-048. J Neurooncol. 2018;20(suppl 6):vi201vi202.

    • Search Google Scholar
    • Export Citation
  • 37

    Crawford J, Saria MG, Dhall G, Margol A, Kesari S. Feasibility of treating high grade gliomas in children with tumor-treating fields: a case series. Cureus. 2020;12(10):e10804.

    • Search Google Scholar
    • Export Citation
  • 38

    Kool M, Korshunov A, Remke M, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012;123(4):473484.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Lafay-Cousin L, Smith A, Chi SN, et al. Clinical, pathological, and molecular characterization of infant medulloblastomas treated with sequential high-dose chemotherapy. Pediatr Blood Cancer. 2016;63(9):15271534.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Zapotocky M, Mata-Mbemba D, Sumerauer D, et al. Differential patterns of metastatic dissemination across medulloblastoma subgroups. J Neurosurg Pediatr. 2018;21(2):145152.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Silginer M, Weller M, Stupp R, Roth P. Biological activity of tumor-treating fields in preclinical glioma models. Cell Death Dis. 2017;8(4):e2753.

  • 42

    Kim EH, Song HS, Yoo SH, Yoon M. Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis. Oncotarget. 2016;7(40):6512565136.

  • 43

    Borgo C, D’Amore C, Sarno S, Salvi M, Ruzzene M. Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther. 2021;6(1):183.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Quandt D, Fiedler E, Boettcher D, Marsch WCh, Seliger B. B7-h4 expression in human melanoma: its association with patients’ survival and antitumor immune response. Clin Cancer Res. 2011;17(10):31003111.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Davidi S, Jacobovitch S, Shteingauz A, et al. Tumor treating fields (TTFields) concomitant with sorafenib inhibit hepatocellular carcinoma in vitro and in vivo. Cancers (Basel). 2022;14(12):2959.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 2078 2078 97
Full Text Views 264 264 12
PDF Downloads 288 288 16
EPUB Downloads 0 0 0