Antiangiogenic agent as a novel treatment for pediatric intracranial arteriovenous malformations: case report

Restricted access

Intracerebral arteriovenous malformations (AVMs) are high-flow collections of abnormal vessels and a common cause of pediatric intracranial hemorrhage. There are few treatment options available for AVMs not amenable to surgical resection, endovascular embolization, radiosurgery, or multimodality treatment. The authors sought to review the molecular and genetic pathways that have been implicated in the formation of AVMs, focusing on the possibility of medically targeting these pathways in the treatment of AVMs. In the novel case presented here, a pediatric patient who was diagnosed with an intracranial AVM unamenable to conventional treatments underwent alternative treatment with molecular pathway inhibitors.

ABBREVIATIONS AKT = protein kinase b; AVM = arteriovenous malformation; ERK = extracellular signal–regulated kinase; MAPK = mitogen-activated protein kinase; MEK = mitogen-activated protein kinase kinase; mTOR = mammalian target of rapamycin; PI3K = phosphatidylinositol 3-kinase; PLCϒ = phospholipase C ϒ; TIA = transient ischemic attack; VEGF = vascular endothelial growth factor; VEGFR = VEGF receptor.
Article Information

Contributor Notes

Correspondence Sandi Lam: Texas Children’s Hospital, Baylor College of Medicine, Houston, TX. sandilam@gmail.com.INCLUDE WHEN CITING Published online October 4, 2019; DOI: 10.3171/2019.7.PEDS1976.Disclosures Dr. Kan reports being a consultant for Stryker Neurovascular and Cerenovus.
Headings
References
  • 1

    Al-Olabi LPolubothu SDowsett KAndrews KAStadnik PJoseph AP: Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy. J Clin Invest 128:149615082018

    • Search Google Scholar
    • Export Citation
  • 2

    Balestri RNeri IPatrizi AAngileri LRicci LMagnano M: Analysis of current data on the use of topical rapamycin in the treatment of facial angiofibromas in tuberous sclerosis complex. J Eur Acad Dermatol Venereol 29:14202015

    • Search Google Scholar
    • Export Citation
  • 3

    Benedito RHellström M: Notch as a hub for signaling in angiogenesis. Exp Cell Res 319:128112882013

  • 4

    Blatt JMcLean TWCastellino SMBurkhart CN: A review of contemporary options for medical management of hemangiomas, other vascular tumors, and vascular malformations. Pharmacol Ther 139:3273332013

    • Search Google Scholar
    • Export Citation
  • 5

    Blauwblomme TBourgeois MMeyer PPuget SDi Rocco FBoddaert N: Long-term outcome of 106 consecutive pediatric ruptured brain arteriovenous malformations after combined treatment. Stroke 45:166416712014

    • Search Google Scholar
    • Export Citation
  • 6

    Chelliah MPDo HMZinn ZPatel VJeng MKhosla RK: Management of complex arteriovenous malformations using a novel combination therapeutic algorithm. JAMA Dermatol 154:131613192018

    • Search Google Scholar
    • Export Citation
  • 7

    Colletti GDalmonte PMoneghini LFerrari DAllevi F: Adjuvant role of anti-angiogenic drugs in the management of head and neck arteriovenous malformations. Med Hypotheses 85:2983022015

    • Search Google Scholar
    • Export Citation
  • 8

    Dalton ADobson GPrasad MMukerji N: De novo intracerebral arteriovenous malformations and a review of the theories of their formation. Br J Neurosurg 32:3053112018

    • Search Google Scholar
    • Export Citation
  • 9

    Darsaut TEGuzman RMarcellus MLEdwards MSTian LDo HM: Management of pediatric intracranial arteriovenous malformations: experience with multimodality therapy. Neurosurgery 69:5405562011

    • Search Google Scholar
    • Export Citation
  • 10

    Fish JEWythe JD: The molecular regulation of arteriovenous specification and maintenance. Dev Dyn 244:3914092015

  • 11

    Gross BADu R: Natural history of cerebral arteriovenous malformations: a meta-analysis. J Neurosurg 118:4374432013

  • 12

    Hammill AMWentzel MGupta ANelson SLucky AElluru R: Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr Blood Cancer 57:101810242011

    • Search Google Scholar
    • Export Citation
  • 13

    Lackner HKarastaneva ASchwinger WBenesch MSovinz PSeidel M: Sirolimus for the treatment of children with various complicated vascular anomalies. Eur J Pediatr 174:157915842015

    • Search Google Scholar
    • Export Citation
  • 14

    Laplante MSabatini DM: mTOR signaling in growth control and disease. Cell 149:2742932012

  • 15

    Lekwuttikarn RLim YHAdmani SChoate KATeng JMC: Genotype-guided medical treatment of an arteriovenous malformation in a child. JAMA Dermatol 155:2562572019

    • Search Google Scholar
    • Export Citation
  • 16

    Ma LChen XLChen YWu CXMa JZhao YL: Subsequent haemorrhage in children with untreated brain arteriovenous malformation: higher risk with unbalanced inflow and outflow angioarchitecture. Eur Radiol 27:286828762017

    • Search Google Scholar
    • Export Citation
  • 17

    Matsuki MAdachi YOzawa YKimura THoshi TOkamoto K: Targeting of tumor growth and angiogenesis underlies the enhanced antitumor activity of lenvatinib in combination with everolimus. Cancer Sci 108:7637712017

    • Search Google Scholar
    • Export Citation
  • 18

    Mizuno TEmoto CFukuda THammill AMAdams DMVinks AA: Model-based precision dosing of sirolimus in pediatric patients with vascular anomalies. Eur J Pharm Sci 109S:S124S1312017

    • Search Google Scholar
    • Export Citation
  • 19

    Moftakhar PHauptman JSMalkasian DMartin NA: Cerebral arteriovenous malformations. Part 1: cellular and molecular biology. Neurosurg Focus 26(5):E102009

    • Search Google Scholar
    • Export Citation
  • 20

    Morales-Valero SFBortolotti CSturiale CLanzino G: Are parenchymal AVMs congenital lesions? Neurosurg Focus 37(3):E22014 (Erratum in Neurosurg Focus 39[1]:E14 2015)

    • Search Google Scholar
    • Export Citation
  • 21

    Morgan MKDavidson ASAssaad NNAStoodley MA: Critical review of brain AVM surgery, surgical results and natural history in 2017. Acta Neurochir (Wien) 159:145714782017

    • Search Google Scholar
    • Export Citation
  • 22

    Nikolaev SIVetiska SBonilla XBoudreau EJauhiainen SRezai Jahromi B: Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med 378:2502612018

    • Search Google Scholar
    • Export Citation
  • 23

    Pimpalwar SYoo RChau AAshton DMargolin JIacobas I: Temporal evolution and management of fast flow vascular anomalies in PTEN hamartoma tumor syndrome. Int J Angiol 27:1581642018

    • Search Google Scholar
    • Export Citation
  • 24

    Rangel-Castilla LRussin JJMartinez-Del-Campo ESoriano-Baron HSpetzler RFNakaji P: Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment. Neurosurg Focus 37(3):E12014

    • Search Google Scholar
    • Export Citation
  • 25

    Saxton RASabatini DM: mTOR signaling in growth, metabolism, and disease. Cell 168:9609762017

  • 26

    Simanshu DKNissley DVMcCormick F: RAS proteins and their regulators in human disease. Cell 170:17332017

  • 27

    Thomas JMSurendran SAbraham MRajavelu AKartha CC: Genetic and epigenetic mechanisms in the development of arteriovenous malformations in the brain. Clin Epigenetics 8:782016

    • Search Google Scholar
    • Export Citation
  • 28

    Triana PDore MCerezo VNCervantes MSánchez AVFerrero MM: Sirolimus in the treatment of vascular anomalies. Eur J Pediatr Surg 27:86902017

    • Search Google Scholar
    • Export Citation
  • 29

    Zhao YAdjei AA: The clinical development of MEK inhibitors. Nat Rev Clin Oncol 11:3854002014

  • 30

    ZhuGe QZhong MZheng WYang GYMao XXie L: Notch-1 signalling is activated in brain arteriovenous malformations in humans. Brain 132:323132412009

    • Search Google Scholar
    • Export Citation
TrendMD
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 13 13 13
Full Text Views 8 8 8
PDF Downloads 8 8 8
EPUB Downloads 0 0 0
PubMed
Google Scholar