Nationwide practice patterns in the use of recombinant human bone morphogenetic protein–2 in pediatric spine surgery as a function of patient-, hospital-, and procedure-related factors

Clinical article

Sandi K. Lam M.D., M.B.A., Christina Sayama M.D., M.P.H., Dominic A. Harris B.A., Valentina Briceño R.N., Thomas G. Luerssen M.D., and Andrew Jea M.D.
View More View Less
  • Neuro-Spine Program, Division of Pediatric Neurosurgery, Texas Children's Hospital, and Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object

Current national patterns as a function of patient-, hospital-, and procedure-related factors, and complication rates in the use of recombinant human bone morphogenetic protein–2 (rhBMP-2) as an adjunct to the practice of pediatric spine surgery have scarcely been investigated.

Methods

The authors conducted a cross-sectional study using data from the Healthcare Cost and Utilization Project Kids' Inpatient Database. Univariate and multivariate logistic regression were used to calculate unadjusted and adjusted odds ratios and 95% confidence intervals, and p values < 0.05 were considered to be statistically significant.

Results

The authors identified 9538 hospitalizations in pediatric patients 20 years old or younger who had undergone spinal fusion in the US in 2009; 1541 of these admissions were associated with rhBMP-2 use. By multivariate logistic regression, the following factors were associated with rhBMP-2 use: patient age 15–20 years; length of hospital stay (adjusted odds ratio [aOR] 1.01, p = 0.017); insurance status (private [aOR 1.49, p < 0.001] compared with Medicaid); hospital type (nonchildren's hospital); region (Midwest [aOR 2.49, p = 0.008] compared with Northeast); spinal refusion (aOR 2.20, p < 0.001); spinal fusion approach/segment (anterior lumbar [aOR 1.73, p < 0.001] and occipitocervical [aOR 1.86, p = 0.013] compared with posterior lumbar); short segment length (aOR 1.42, p = 0.016) and midlength (aOR 1.44, p = 0.005) compared with long; and preoperative diagnosis (Scheuermann kyphosis [aOR 1.56, p < 0.017] and spondylolisthesis [aOR 1.93, p < 0.001]).

Conclusions

Use of BMP in pediatric spine procedures now comprises more than 10% of pediatric spinal fusion. Patient-related (age, insurance type, diagnosis); hospital-related (children's hospital vs general hospital, region in the US); and procedure-related (redo fusion, anterior vs posterior approach, spinal levels, number of levels fused) factors are associated with the variation in BMP use in the US.

Abbreviations used in this paper:aOR = adjusted odds ratio; DVT = deep venous thrombosis; ICD-9-CM = International Classification of Diseases, Ninth Revision, Clinical Modifications; KID = Kids' Inpatient Database; LOS = length of hospital stay; rhBMP-2 = recombinant human bone morphogenetic protein–2.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address correspondence to: Andrew Jea, M.D., Division of Pediatric Neurosurgery, Texas Children's Hospital, 6621 Fannin St., Houston, TX 77030. email: ahjea@texaschildrens.org.

Please include this information when citing this paper: published online August 29, 2014; DOI: 10.3171/2014.7.PEDS1499.

  • 1

    Abd-El-Barr MM, , Cox JB, , Antonucci MU, , Bennett J, , Murad GJ, & Pincus DW: Recombinant human bone morphogenetic protein-2 as an adjunct for spine fusion in a pediatric population. Pediatr Neurosurg 47:266271, 2011

    • Search Google Scholar
    • Export Citation
  • 2

    Allen RT, , Lee YP, , Stimson E, & Garfin SR: Bone morphogenetic protein-2 (BMP-2) in the treatment of pyogenic vertebral osteomyelitis. Spine (Phila Pa 1976) 32:29963006, 2007

    • Search Google Scholar
    • Export Citation
  • 3

    Amhaz HH, , Fox BD, , Johnson KK, , Whitehead WE, , Curry DJ, & Luerssen TG, : Postlaminoplasty kyphotic deformity in the thoracic spine: case report and review of the literature. Pediatr Neurosurg 45:151154, 2009

    • Search Google Scholar
    • Export Citation
  • 4

    Betz RR, , Lavelle WF, & Samdani AF: Bone grafting options in children. Spine (Phila Pa 1976) 35:16481654, 2010

  • 5

    Blanco JS, & Sears CJ: Allograft bone use during instrumentation and fusion in the treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 22:13381342, 1997

    • Search Google Scholar
    • Export Citation
  • 6

    Boden SD, , Zdeblick TA, , Sandhu HS, & Heim SE: The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine (Phila Pa 1976) 25:376381, 2000

    • Search Google Scholar
    • Export Citation
  • 7

    Boyne PJ: Application of bone morphogenetic proteins in the treatment of clinical oral and maxillofacial osseous defects. J Bone Joint Surg Am 83-A Pt 2 Suppl 1 S146S150, 2001

    • Search Google Scholar
    • Export Citation
  • 8

    Boyne PJ, , Nath R, & Nakamura A: Human recombinant BMP-2 in osseous reconstruction of simulated cleft palate defects. Br J Oral Maxillofac Surg 36:8490, 1998

    • Search Google Scholar
    • Export Citation
  • 9

    Burkus JK, , Gornet MF, , Dickman CA, & Zdeblick TA: Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15:337349, 2002

    • Search Google Scholar
    • Export Citation
  • 10

    Burkus JK, , Gornet MF, , Schuler TC, , Kleeman TJ, & Zdeblick TA: Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. J Bone Joint Surg Am 91:11811189, 2009

    • Search Google Scholar
    • Export Citation
  • 11

    Cahill KS, , Chi JH, , Day A, & Claus EB: Prevalence, complications, and hospital charges associated with use of bonemorphogenetic proteins in spinal fusion procedures. JAMA 302:5866, 2009

    • Search Google Scholar
    • Export Citation
  • 12

    Carlisle E, & Fischgrund JS: Bone morphogenetic proteins for spinal fusion. Spine J 5:6 Suppl 240S249S, 2005

  • 13

    Carstens MH, , Chin M, , Ng T, & Tom WK: Reconstruction of #7 facial cleft with distraction-assisted in situ osteogenesis (DISO): role of recombinant human bone morphogenetic protein-2 with Helistat-activated collagen implant. J Craniofac Surg 16:10231032, 2005

    • Search Google Scholar
    • Export Citation
  • 14

    Chao M, , Donovan T, , Sotelo C, & Carstens MH: In situ osteogenesis of hemimandible with rhBMP-2 in a 9-year-old boy: osteoinduction via stem cell concentration. J Craniofac Surg 17:405412, 2006

    • Search Google Scholar
    • Export Citation
  • 15

    Chin M, , Ng T, , Tom WK, & Carstens M: Repair of alveolar clefts with recombinant human bone morphogenetic protein (rhBMP-2) in patients with clefts. J Craniofac Surg 16:778789, 2005

    • Search Google Scholar
    • Export Citation
  • 16

    Czitrom A, Biology of bone grafting and principles of bone banking. Weinstein SL: The Pediatric Spine: Principles and Practice New York, Raven Press, 1994. 12851298

    • Search Google Scholar
    • Export Citation
  • 17

    Devine JG, , Dettori JR, , France JC, , Brodt E, & McGuire RA: The use of rhBMP in spine surgery: is there a cancer risk?. Evid Based Spine Care J 3:3541, 2012

    • Search Google Scholar
    • Export Citation
  • 18

    Dickinson BP, , Ashley RK, , Wasson KL, , O'Hara C, , Gabbay J, & Heller JB, : Reduced morbidity and improved healing with bone morphogenic protein-2 in older patients with alveolar cleft defects. Plast Reconstr Surg 121:209217, 2008

    • Search Google Scholar
    • Export Citation
  • 19

    Dimar JR II, , Glassman SD, , Burkus JK, , Pryor PW, , Hardacker JW, & Carreon LY: Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am 91:13771386, 2009

    • Search Google Scholar
    • Export Citation
  • 20

    Fahim DK, , Whitehead WE, , Curry DJ, , Dauser RC, , Luerssen TG, & Jea A: Routine use of recombinant human bone morphogenetic protein-2 in posterior fusions of the pediatric spine: safety profile and efficacy in the early postoperative period. Neurosurgery 67:11951204, 2010

    • Search Google Scholar
    • Export Citation
  • 21

    Fu R, , Selph S, , McDonagh M, , Peterson K, , Tiwari A, & Chou R, : Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med 158:890902, 2013

    • Search Google Scholar
    • Export Citation
  • 22

    Fulkerson DH, , Hwang SW, , Patel AJ, & Jea A: Open reduction and internal fixation for angulated, unstable odontoid synchondrosis fractures in children: a safe alternative to halo fixation? Report of 2 cases. J Neurosurg Pediatr 9:3541, 2012

    • Search Google Scholar
    • Export Citation
  • 23

    Gressot LV, , Patel AJ, , Hwang SW, , Fulkerson DH, & Jea A: Iliac screw placement in neuromuscular scoliosis using anatomical landmarks and uniplanar anteroposterior fluoroscopic imaging with postoperative CT confirmation. Clinical article. J Neurosurg Pediatr 13:5461, 2014

    • Search Google Scholar
    • Export Citation
  • 24

    Hansen SM, & Sasso RC: Resorptive response of rhBMP2 simulating infection in an anterior lumbar interbody fusion with a femoral ring. J Spinal Disord Tech 19:130134, 2006

    • Search Google Scholar
    • Export Citation
  • 25

    Healthcare Cost and Utilization Project: Introduction to the HCUP Kids' Inpatient Database (KID) 2009. (http://www.hcup-us.ahrq.gov/db/nation/kid/kid_2009_introduction.jsp)[Accessed July 8, 2014]

    • Search Google Scholar
    • Export Citation
  • 26

    Herford AS, , Boyne PJ, , Rawson R, & Williams RP: Bone morphogenetic protein-induced repair of the premaxillary cleft. J Oral Maxillofac Surg 65:21362141, 2007

    • Search Google Scholar
    • Export Citation
  • 27

    Hwang SW, , Thomas JG, , Blumberg TJ, , Whitehead WE, , Curry DJ, & Dauser RC, : Kyphectomy in patients with myelomeningocele treated with pedicle screw-only constructs: case reports and review. Report of 2 cases. J Neurosurg Pediatr 8:6370, 2011

    • Search Google Scholar
    • Export Citation
  • 28

    Iantosca MR, , McPherson CE, , Ho SY, & Maxwell GD: Bone morphogenetic proteins-2 and -4 attenuate apoptosis in a cerebellar primitive neuroectodermal tumor cell line. J Neurosci Res 56:248258, 1999

    • Search Google Scholar
    • Export Citation
  • 29

    Ide H, , Yoshida T, , Matsumoto N, , Aoki K, , Osada Y, & Sugimura T, : Growth regulation of human prostate cancer cells by bone morphogenetic protein-2. Cancer Res 57:50225027, 1997

    • Search Google Scholar
    • Export Citation
  • 30

    Itoh K, , Udagawa N, , Katagiri T, , Iemura S, , Ueno N, & Yasuda H, : Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-ϰB ligand. Endocrinology 142:36563662, 2001

    • Search Google Scholar
    • Export Citation
  • 31

    Jain A, , Kebaish KM, & Sponseller PD: Factors associated with use of bone morphogenetic protein during pediatric spinal fusion surgery: an analysis of 4817 patients. J Bone Joint Surg Am 95:12651270, 2013

    • Search Google Scholar
    • Export Citation
  • 32

    Johnston CE, & Birch JG: A tale of two tibias: a review of treatment options for congenital pseudarthrosis of the tibia. J Child Orthop 2:133149, 2008

    • Search Google Scholar
    • Export Citation
  • 33

    Kanatani M, , Sugimoto T, , Kaji H, , Kobayashi T, , Nishiyama K, & Fukase M, : Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity. J Bone Miner Res 10:16811690, 1995

    • Search Google Scholar
    • Export Citation
  • 34

    Lad SP, , Bagley JH, , Karikari IO, , Babu R, , Ugiliweneza B, & Kong M, : Cancer after spinal fusion: the role of bone morphogenetic protein. Neurosurgery 73:440449, 2013

    • Search Google Scholar
    • Export Citation
  • 35

    Lind M, , Eriksen EF, & Bünger C: Bone morphogenetic protein-2 but not bone morphogenetic protein-4 and -6 stimulates chemotactic migration of human osteoblasts, human marrow osteoblasts, and U2-OS cells. Bone 18:5357, 1996

    • Search Google Scholar
    • Export Citation
  • 36

    Lindley TE, , Dahdaleh NS, , Menezes AH, & Abode-Iyamah KO: Complications associated with recombinant human bone morphogenetic protein use in pediatric craniocervical arthrodesis. Clinical article. J Neurosurg Pediatr 7:468474, 2011

    • Search Google Scholar
    • Export Citation
  • 37

    Lu DC, & Sun PP: Bone morphogenetic protein for salvage fusion in an infant with Down syndrome and craniovertebral instability. Case report. J Neurosurg 106:6 Suppl 480483, 2007

    • Search Google Scholar
    • Export Citation
  • 38

    Meyer RA Jr, , Gruber HE, , Howard BA, , Tabor OB Jr, , Murakami T, & Kwiatkowski TC, : Safety of recombinant human bone morphogenetic protein-2 after spinal laminectomy in the dog. Spine (Phila Pa 1976) 24:747754, 1999

    • Search Google Scholar
    • Export Citation
  • 39

    Muscal E, , Satyan KB, & Jea A: Atlantoaxial subluxation as an early manifestation in an adolescent with undifferentiated spondyloarthritis: a case report and review of the literature. J Med Case Reports 5:275, 2011

    • Search Google Scholar
    • Export Citation
  • 40

    Oluigbo CO, & Solanki GA: Use of recombinant human bone morphogenetic protein-2 to enhance posterior cervical spine fusion at 2 years of age: technical note. Pediatr Neurosurg 44:393396, 2008

    • Search Google Scholar
    • Export Citation
  • 41

    Patel AJ, , Agadi S, , Thomas JG, , Schmidt RJ, , Hwang SW, & Fulkerson DH, : Neurophysiologic intraoperative monitoring in children with Down syndrome. Childs Nerv Syst 29:281287, 2013

    • Search Google Scholar
    • Export Citation
  • 42

    Patel AJ, , Boatey J, , Muns J, , Bollo RJ, , Whitehead WE, & Giannoni CM, : Endoscopic endonasal odontoidectomy in a child with chronic type 3 atlantoaxial rotatory fixation: case report and literature review. Childs Nerv Syst 28:19711975, 2012

    • Search Google Scholar
    • Export Citation
  • 43

    Patel AJ, , Vadivelu S, , Desai SK, & Jea A: Congenital hypoplasia or aplasia of the lumbosacral pedicle as an unusual cause of spondylolisthesis in the pediatric age group. Case report. J Neurosurg Pediatr 11:717721, 2013

    • Search Google Scholar
    • Export Citation
  • 44

    Poynton AR, & Lane JM: Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine (Phila Pa 1976) 27:16 Suppl 1 S40S48, 2002

    • Search Google Scholar
    • Export Citation
  • 45

    Rangel-Castilla L, , Hwang SW, , Whitehead WE, , Curry DJ, , Luerssen TG, & Jea A: Surgical treatment of thoracic Pott disease in a 3-year-old child, with vertebral column resection and posterior-only circumferential reconstruction of the spinal column. Case report . J Neurosurg Pediatr 9:447451, 2012

    • Search Google Scholar
    • Export Citation
  • 46

    Richards BS, , Oetgen ME, & Johnston CE: The use of rhBMP-2 for the treatment of congenital pseudarthrosis of the tibia: a case series. J Bone Joint Surg Am 92:177185, 2010

    • Search Google Scholar
    • Export Citation
  • 47

    Sandhu HS, , Kanim LE, , Kabo JM, , Toth JM, , Zeegan EN, & Liu D, : Evaluation of rhBMP-2 with an OPLA carrier in a canine posterolateral (transverse process) spinal fusion model. Spine (Phila Pa 1976) 20:26692682, 1995

    • Search Google Scholar
    • Export Citation
  • 48

    Schimandle JH, , Boden SD, & Hutton WC: Experimental spinal fusion with recombinant human bone morphogenetic protein-2. Spine (Phila Pa 1976) 20:13261337, 1995

    • Search Google Scholar
    • Export Citation
  • 49

    Shields LB, , Raque GH, , Glassman SD, , Campbell M, , Vitaz T, & Harpring J, : Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine (Phila Pa 1976) 31:542547, 2006

    • Search Google Scholar
    • Export Citation
  • 50

    Simmonds MC, , Brown JV, , Heirs MK, , Higgins JP, , Mannion RJ, & Rodgers MA, : Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion: a meta-analysis of individual-participant data. Ann Intern Med 158:877889, 2013

    • Search Google Scholar
    • Export Citation
  • 51

    Singh K, , Marquez-Lara A, , Nandyala SV, , Patel AA, & Fineberg SJ: Incidence and risk factors for dysphagia after anterior cervical fusion. Spine (Phila Pa 1976) 38:18201825, 2013

    • Search Google Scholar
    • Export Citation
  • 52

    Smucker JD, , Rhee JM, , Singh K, , Yoon ST, & Heller JG: Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine (Phila Pa 1976) 31:28132819, 2006

    • Search Google Scholar
    • Export Citation
  • 53

    Soda H, , Raymond E, , Sharma S, , Lawrence R, , Cerna C, & Gomez L, : Antiproliferative effects of recombinant human bone morphogenetic protein-2 on human tumor colony-forming units. Anticancer Drugs 9:327331, 1998

    • Search Google Scholar
    • Export Citation
  • 54

    Subach BR, , Haid RW, , Rodts GE, & Kaiser MG: Bone morphogenetic protein in spinal fusion: overview and clinical update. Neurosurg Focus 10:4 E3, 2001

    • Search Google Scholar
    • Export Citation
  • 55

    Tada A, , Nishihara T, & Kato H: Bone morphogenetic protein 2 suppresses the transformed phenotype and restores actin microfilaments of human lung carcinoma A549 cells. Oncol Rep 5:11371140, 1998

    • Search Google Scholar
    • Export Citation
  • 56

    Tom WK, , Chin M, , Ng T, , Bouchoucha S, & Carstens M: Distraction of rhBMP-2-generated mandible: how stable is the engineered bone in response to subsequent surgeries?. J Oral Maxillofac Surg 66:14991505, 2008

    • Search Google Scholar
    • Export Citation
  • 57

    Toth JM, , Boden SD, , Burkus JK, , Badura JM, , Peckham SM, & McKay WF: Short-term osteoclastic activity induced by locally high concentrations of recombinant human bone morphogenetic protein-2 in a cancellous bone environment. Spine (Phila Pa 1976) 34:539550, 2009

    • Search Google Scholar
    • Export Citation
  • 58

    United States Food and Drug Administration: Summary of safety and effectiveness data (http://www.accessdata.fda.gov/cdrh_docs/pdf/P000058b.pdf) [Accessed July 8, 2014]

    • Search Google Scholar
    • Export Citation
  • 59

    Viswanathan A, , Johnson KK, , Whitehead WE, , Curry DJ, , Luerssen TG, & Jea A: Hybrid spinal constructs using sublaminar polyester bands in posterior instrumented fusions in children: a series of 5 cases. Neurosurgery 66:862867, 2010

    • Search Google Scholar
    • Export Citation
  • 60

    Viswanathan A, , Whitehead WE, , Luerssen TG, , Illner A, & Jea A: “Orthotopic” ossiculum terminale persistens and atlantoaxial instability in a child less than 12 years of age: a case report and review of the literature. Cases J 2:8530, 2009

    • Search Google Scholar
    • Export Citation
  • 61

    Vitale MG, , Goss JM, , Matsumoto H, & Roye DP Jr: Epidemiology of pediatric spinal cord injury in the United States: years 1997 and 2000. J Pediatr Orthop 26:745749, 2006

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 132 99 12
Full Text Views 269 10 2
PDF Downloads 218 8 1
EPUB Downloads 0 0 0