Early deterioration of cerebrospinal fluid dynamics in a neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation

Laboratory investigation

Kristian Aquilina F.R.C.S. (NeuroSurg) 1 , 2 , 3 , Ela Chakkarapani M.R.C.P.C.H. 1 , 2 and Marianne Thoresen Ph.D. 1 , 2 , 4
View More View Less
  • 1 University of Bristol School of Clinical Sciences;
  • 2 Neonatal Neuroscience, St. Michael's Hospital;
  • 3 Department of Neurosurgery, Frenchay Hospital, Bristol, United Kingdom; and
  • 4 Institute of Basic Medical Sciences, University of Oslo, Norway
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object

The optimal management of neonatal intraventricular hemorrhage (IVH) and posthemorrhagic ventricular dilation is challenging. The importance of early treatment has been demonstrated in a recent randomized study, involving early ventricular irrigation and drainage, which showed significant cognitive improvement at 2 years. The objective of this study was to define the changes in CSF absorption capacity over time in a neonatal piglet model of IVH.

Methods

Ten piglets (postnatal age 9–22 hours) underwent intraventricular injection of homologous blood. A ventricular access device was inserted 7–10 days later. Ventricular dilation was measured by ultrasonography. Serial constant flow infusion studies were performed through the access device from Week 2 to Week 8.

Results

Seven piglets survived long term, 43–60 days, and developed ventricular dilation; this reached a maximum by Week 6. There was no significant difference in baseline intracranial pressure throughout this period. The resistance to CSF outflow, Rout, increased from 63.5 mm Hg/ml/min in Week 2 to 118 mm Hg/ml/min in Week 4. Although Rout decreased after Week 5, the ventriculomegaly persisted.

Conclusions

In this neonatal piglet model, reduction in CSF absorptive capacity occurs early after IVH and accompanies progressive and irreversible ventriculomegaly. This suggests that early treatment of premature neonates with IVH is desirable.

Abbreviations used in this paper:DRIFT = drainage, irrigation, and fibrinolytic therapy; ICP = intracranial pressure; IQR = interquartile range; IVH = intraventricular hemorrhage; PHVD = posthemorrhagic ventricular dilation; Rout = resistance to CSF outflow; SAH = subarachnoid hemorrhage; TGF = transforming growth factor; VEGF = vascular endothelial growth factor.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address correspondence to: Kristian Aquilina, F.R.C.S., Department of Neurosurgery, Frenchay Hospital, Bristol BS16 1LE, England. email: K.Aquilina@bristol.ac.uk.

Please include this information when citing this paper: published online September 28, 2012; DOI: 10.3171/2012.8.PEDS11386.

  • 1

    Aquilina K, , Hobbs C, , Cherian S, , Tucker A, , Porter H, & Whitelaw A, : A neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation. J Neurosurg 107:2 Suppl 126136, 2007

    • Search Google Scholar
    • Export Citation
  • 2

    Black PM, , Tzouras A, & Foley L: Cerebrospinal fluid dynamics and hydrocephalus after experimental subarachnoid hemorrhage. Neurosurgery 17:5762, 1985

    • Search Google Scholar
    • Export Citation
  • 3

    Boon AJ, , Tans JT, , Delwel EJ, , Egeler-Peerdeman SM, , Hanlo PW, & Wurzer HA, : Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg 87:687693, 1997

    • Search Google Scholar
    • Export Citation
  • 4

    Böttner M, , Krieglstein K, & Unsicker K: The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 75:22272240, 2000

    • Search Google Scholar
    • Export Citation
  • 5

    Bradbury MW, & Westrop RJ: Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J Physiol 339:519534, 1983

    • Search Google Scholar
    • Export Citation
  • 6

    Brinker T, , Beck H, , Klinge P, , Kischnik B, , Oi S, & Samii M: Sinusoidal intrathecal infusion for assessment of CSF dynamics in kaolin-induced hydrocephalus. Acta Neurochir (Wien) 140:10691075, 1998

    • Search Google Scholar
    • Export Citation
  • 7

    Cherian S, , Thoresen M, , Silver IA, , Whitelaw A, & Love S: Transforming growth factor-betas in a rat model of neonatal posthaemorrhagic hydrocephalus. Neuropathol Appl Neurobiol 30:585600, 2004

    • Search Google Scholar
    • Export Citation
  • 8

    Cosan TE, , Guner AI, , Akcar N, , Uzuner K, & Tel E: Progressive ventricular enlargement in the absence of high ventricular pressure in an experimental neonatal rat model. Childs Nerv Syst 18:1014, 2002

    • Search Google Scholar
    • Export Citation
  • 9

    Czosnyka M, , Batorski L, , Laniewski P, , Maksymowicz W, , Koszewski W, & Zaworski W: A computer system for the identification of the cerebrospinal compensatory model. Acta Neurochir (Wien) 105:112116, 1990

    • Search Google Scholar
    • Export Citation
  • 10

    Czosnyka M, , Whitehouse H, , Smielewski P, , Simac S, & Pickard JD: Testing of cerebrospinal compensatory reserve in shunted and non-shunted patients: a guide to interpretation based on an observational study. J Neurol Neurosurg Psychiatry 60:549558, 1996

    • Search Google Scholar
    • Export Citation
  • 11

    Czosnyka ZH, , Czosnyka M, & Pickard JD: Shunt testing in-vivo: a method based on the data from the UK shunt evaluation laboratory. Acta Neurochir Suppl 81:2730, 2002

    • Search Google Scholar
    • Export Citation
  • 12

    Davies MW, , Swaminathan M, , Chuang SL, & Betheras FR: Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch Dis Child Fetal Neonatal Ed 82:F218F223, 2000

    • Search Google Scholar
    • Export Citation
  • 13

    de Vries LS, , Liem KD, , van Dijk K, , Smit BJ, , Sie L, & Rademaker KJ, : Early versus late treatment of posthaemorrhagic ventricular dilatation: results of a retrospective study from five neonatal intensive care units in The Netherlands. Acta Paediatr 91:212217, 2002

    • Search Google Scholar
    • Export Citation
  • 14

    Donovan FM, , Pike CJ, , Cotman CW, & Cunningham DD: Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci 17:53165326, 1997

    • Search Google Scholar
    • Export Citation
  • 15

    Douglas MR, , Daniel M, , Lagord C, , Akinwunmi J, , Jackowski A, & Cooper C, : High CSF transforming growth factor beta levels after subarachnoid haemorrhage: association with chronic communicating hydrocephalus. J Neurol Neurosurg Psychiatry 80:545550, 2009

    • Search Google Scholar
    • Export Citation
  • 16

    Flood C, , Akinwunmi J, , Lagord C, , Daniel M, , Berry M, & Jackowski A, : Transforming growth factor-beta1 in the cerebrospinal fluid of patients with subarachnoid hemorrhage: titers derived from exogenous and endogenous sources. J Cereb Blood Flow Metab 21:157162, 2001

    • Search Google Scholar
    • Export Citation
  • 17

    Fox RJ, , Walji AH, , Mielke B, , Petruk KC, & Aronyk KE: Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery 39:8491, 1996

    • Search Google Scholar
    • Export Citation
  • 18

    Fukushima N, , Yokouchi K, , Kawagishi K, , Ren G, , Higashiyama F, & Moriizumi T: Proliferating cell populations in experimentally-induced hydrocephalus in developing rats. J Clin Neurosci 10:334337, 2003

    • Search Google Scholar
    • Export Citation
  • 19

    Gjerris F, , Børgesen SE, , Sørensen PS, , Boesen F, , Schmidt K, & Harmsen A, : Resistance to cerebrospinal fluid outflow and intracranial pressure in patients with hydrocephalus after subarachnoid haemorrhage. Acta Neurochir (Wien) 88:7986, 1987

    • Search Google Scholar
    • Export Citation
  • 20

    Gómez DG, , DiBenedetto AT, , Pavese AM, , Firpo A, , Hershan DB, & Potts DG: Development of arachnoid villi and granulations in man. Acta Anat (Basel) 111:247258, 1982

    • Search Google Scholar
    • Export Citation
  • 21

    Gonzalez-Darder J, , Barbera J, , Cerda-Nicolas M, , Segura D, , Broseta J, & Barcia-Salorio JL: Sequential morphological and functional changes in kaolin-induced hydrocephalus. J Neurosurg 61:918924, 1984

    • Search Google Scholar
    • Export Citation
  • 22

    Grainger DJ, , Wakefield L, , Bethell HW, , Farndale RW, & Metcalfe JC: Release and activation of platelet latent TGF-beta in blood clots during dissolution with plasmin. Nat Med 1:932937, 1995

    • Search Google Scholar
    • Export Citation
  • 23

    Guinane JE: Cerebrospinal fluid resistance and compliance in subacutely hydrocephalic cats. Neurology 24:138142, 1974

  • 24

    Heep A, , Stoffel-Wagner B, , Bartmann P, , Benseler S, , Schaller C, & Groneck P, : Vascular endothelial growth factor and transforming growth factor-beta1 are highly expressed in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus. Pediatr Res 56:768774, 2004

    • Search Google Scholar
    • Export Citation
  • 25

    Hochwald GM, , Lux WE Jr, , Sahar A, & Ransohoff J: Experimental hydrocephalus. Changes in cerebrospinal fluid dynamics as a function of time. Arch Neurol 26:120129, 1972

    • Search Google Scholar
    • Export Citation
  • 26

    Hochwald GM, , Nakamura S, & Camins MB: The rat in experimental obstructive hydrocephalus. Z Kinderchir 34:403410, 1981

  • 27

    Hochwald GM, , Sahar A, , Sadik AR, & Ransohoff J: Cerebrospinal fluid production and histological observations in animals with experimental obstructive hydrocephalus. Exp Neurol 25:190199, 1969

    • Search Google Scholar
    • Export Citation
  • 28

    Jones HC, & Bucknall RM: Changes in cerebrospinal fluid pressure and outflow from the lateral ventricles during development of congenital hydrocephalus in the H-Tx rat. Exp Neurol 98:573583, 1987

    • Search Google Scholar
    • Export Citation
  • 29

    Katzman R, & Hussey F: A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology 20:534544, 1970

    • Search Google Scholar
    • Export Citation
  • 30

    Khan OH, , Enno TL, & Del Bigio MR: Brain damage in neonatal rats following kaolin induction of hydrocephalus. Exp Neurol 200:311320, 2006

    • Search Google Scholar
    • Export Citation
  • 31

    Kida S, , Pantazis A, & Weller RO: CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480488, 1993

    • Search Google Scholar
    • Export Citation
  • 32

    Kim DJ, , Czosnyka Z, , Keong N, , Radolovich DK, , Smielewski P, & Sutcliffe MP, : Index of cerebrospinal compensatory reserve in hydrocephalus. Neurosurgery 64:494502, 2009

    • Search Google Scholar
    • Export Citation
  • 33

    Kohn DF, , Chinookoswong N, & Chou SM: A new model of congenital hydrocephalus in the rat. Acta Neuropathol 54:211218, 1981

  • 34

    Kondziella D, , Lüdemann W, , Brinker T, , Sletvold O, & Sonnewald U: Alterations in brain metabolism, CNS morphology and CSF dynamics in adult rats with kaolin-induced hydrocephalus. Brain Res 927:3541, 2002

    • Search Google Scholar
    • Export Citation
  • 35

    Kosteljanetz M: CSF dynamics in patients with subarachnoid and/or intraventricular hemorrhage. J Neurosurg 60:940946, 1984

  • 36

    Kosteljanetz M: Pressure-volume conditions in patients with subarachnoid and/or intraventricular hemorrhage. J Neurosurg 63:398403, 1985

    • Search Google Scholar
    • Export Citation
  • 37

    Kuchiwaki H, , Hasuo M, , Furuse M, , Brock M, & Dietz H: [Measurement of ventricular fluid pressure and brain tissue pressure in acute experimental communicating hydrocephalus (author's transl).]. No To Shinkei 30:11091113, 1978. (Jpn)

    • Search Google Scholar
    • Export Citation
  • 38

    Larroche JC: Post-haemorrhagic hydrocephalus in infancy. Anatomical study. Biol Neonate 20:287299, 1972

  • 39

    Leeds SE, , Kong AK, & Wise BL: Alternative pathways for drainage of cerebrospinal fluid in the canine brain. Lymphology 22:144146, 1989

  • 40

    Lollis SS, , Hoopes PJ, , Kane S, , Paulsen K, , Weaver J, & Roberts DW: Low-dose kaolin-induced feline hydrocephalus and feline ventriculostomy: an updated model. Laboratory investigation. J Neurosurg Pediatr 4:383388, 2009

    • Search Google Scholar
    • Export Citation
  • 41

    Nyberg-Hansen R, , Torvik A, & Bhatia R: On the pathology of experimental hydrocephalus. Brain Res 95:343350, 1975

  • 42

    Oi S, & Di Rocco C: Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 22:662669, 2006

    • Search Google Scholar
    • Export Citation
  • 43

    Osaka K, , Handa H, , Matsumoto S, & Yasuda M: Development of the cerebrospinal fluid pathway in the normal and abnormal human embryos. Childs Brain 6:2638, 1980

    • Search Google Scholar
    • Export Citation
  • 44

    Papaiconomou C, , Bozanovic-Sosic R, , Zakharov A, & Johnston M: Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics?. Am J Physiol Regul Integr Comp Physiol 283:R869R876, 2002

    • Search Google Scholar
    • Export Citation
  • 45

    Petrella G, , Czosnyka M, , Smielewski P, , Allin D, , Guazzo EP, & Pickard JD, : In vivo assessment of hydrocephalus shunt. Acta Neurol Scand 120:317323, 2009

    • Search Google Scholar
    • Export Citation
  • 46

    Sahar A: Experimental progressive hydrocephalus in the young animal. Childs Brain 5:1423, 1979

  • 47

    Savman K, , Nilsson UA, , Blennow M, , Kjellmer I, & Whitelaw A: Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr Res 49:208212, 2001

    • Search Google Scholar
    • Export Citation
  • 48

    Sundström N, , Andersson K, , Marmarou A, , Malm J, & Eklund A: Comparison between 3 infusion methods to measure cerebrospinal fluid outflow conductance. Clinical article. J Neurosurg 113:12941303, 2010

    • Search Google Scholar
    • Export Citation
  • 49

    Suzuki S, , Ishii M, , Ottomo M, & Iwabuchi T: Changes in the subarachnoid space after experimental subarachnoid haemorrhage in the dog: scanning electron microscopic observation. Acta Neurochir (Wien) 39:114, 1977

    • Search Google Scholar
    • Export Citation
  • 50

    Thoresen M, , Haaland K, , Løberg EM, , Whitelaw A, , Apricena F, & Hankø E, : A piglet survival model of posthypoxic encephalopathy. Pediatr Res 40:738748, 1996

    • Search Google Scholar
    • Export Citation
  • 51

    Ventriculomegaly Trial Group: Randomised trial of early tapping in neonatal posthaemorrhagic ventricular dilatation. Arch Dis Child 65:1 Spec No 310, 1990

    • Search Google Scholar
    • Export Citation
  • 52

    Ventriculomegaly Trial Group: Randomised trial of early tapping in neonatal posthaemorrhagic ventricular dilatation: results at 30 months. Arch Dis Child Fetal Neonatal Ed 70:F129F136, 1994

    • Search Google Scholar
    • Export Citation
  • 53

    Wagner KR, , Sharp FR, , Ardizzone TD, , Lu A, & Clark JF: Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 23:629652, 2003

    • Search Google Scholar
    • Export Citation
  • 54

    Whitelaw A, , Cherian S, , Thoresen M, & Pople I: Posthaemorrhagic ventricular dilatation: new mechanisms and new treatment. Acta Paediatr Suppl 93:1114, 2004

    • Search Google Scholar
    • Export Citation
  • 55

    Whitelaw A, , Christie S, & Pople I: Transforming growth factorbeta1: a possible signal molecule for posthemorrhagic hydrocephalus?. Pediatr Res 46:576580, 1999

    • Search Google Scholar
    • Export Citation
  • 56

    Whitelaw A, , Evans D, , Carter M, , Thoresen M, , Wroblewska J, & Mandera M, : Randomized clinical trial of prevention of hydrocephalus after intraventricular hemorrhage in preterm infants: brain-washing versus tapping fluid. Pediatrics 119:e1071e1078, 2007

    • Search Google Scholar
    • Export Citation
  • 57

    Whitelaw A, , Jary S, , Kmita G, , Wroblewska J, , Musialik-Swietlinska E, & Mandera M, : Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 125:e852e858, 2010

    • Search Google Scholar
    • Export Citation
  • 58

    Whitelaw A, , Kennedy CR, & Brion LP: Diuretic therapy for newborn infants with posthemorrhagic ventricular dilatation. Cochrane Database Syst Rev 2 CD002270, 2001

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 311 138 8
Full Text Views 101 15 0
PDF Downloads 237 12 0
EPUB Downloads 0 0 0