A mobile high-field magnetic resonance imaging system for neurosurgery

Full access

The authors' goal was to place a mobile, 1.5 tesla magnetic resonance (MR) imaging system into a neurosurgical operating room without adversely affecting established neurosurgical management. The system would help to plan accurate surgical corridors, confirm the accomplishment of operative objectives, and detect acute complications such as hemorrhage or ischemia.

The authors used an actively shielded 1.5 tesla magnet, together with 15 m tesla/m gradients, MR console computers, gradient amplifiers, a titanium, hydraulic-controlled operating table, and a radio frequency coil that can be disassembled. The magnet is moved to and from the surgical field by using overhead crane technology. To date, the system has provided unfettered access to 46 neurosurgical patients.

In all patients, high-definition T1- and/or T2-weighted images were rapidly and reproducibly acquired at various stages of the surgical procedures. Eleven patients underwent craniotomy that was optimized after pre-incisional imaging. In four patients who harbored subtotally resected tumor, intraoperative MR imaging allowed removal of remaining tumor. Interestingly, the intraoperative administration of gadolinium in the management of patients with malignant glioma demonstrated a dynamic expansion of enhancement beyond the preoperative contrast contour. These zones of new enhancement proved, on examination of biopsy sample, to be tumor.

The authors have demonstrated that high-quality MR images can be obtained within reasonable time constraints in the operating room. Procedures can be conducted without compromising or altering traditional neurosurgical, nursing, or anesthetic techniques. It is feasible that within the next decade intraoperative MR imaging may become the standard of care in neurosurgery.

The authors' goal was to place a mobile, 1.5 tesla magnetic resonance (MR) imaging system into a neurosurgical operating room without adversely affecting established neurosurgical management. The system would help to plan accurate surgical corridors, confirm the accomplishment of operative objectives, and detect acute complications such as hemorrhage or ischemia.

The authors used an actively shielded 1.5 tesla magnet, together with 15 m tesla/m gradients, MR console computers, gradient amplifiers, a titanium, hydraulic-controlled operating table, and a radio frequency coil that can be disassembled. The magnet is moved to and from the surgical field by using overhead crane technology. To date, the system has provided unfettered access to 46 neurosurgical patients.

In all patients, high-definition T1- and/or T2-weighted images were rapidly and reproducibly acquired at various stages of the surgical procedures. Eleven patients underwent craniotomy that was optimized after pre-incisional imaging. In four patients who harbored subtotally resected tumor, intraoperative MR imaging allowed removal of remaining tumor. Interestingly, the intraoperative administration of gadolinium in the management of patients with malignant glioma demonstrated a dynamic expansion of enhancement beyond the preoperative contrast contour. These zones of new enhancement proved, on examination of biopsy sample, to be tumor.

The authors have demonstrated that high-quality MR images can be obtained within reasonable time constraints in the operating room. Procedures can be conducted without compromising or altering traditional neurosurgical, nursing, or anesthetic techniques. It is feasible that within the next decade intraoperative MR imaging may become the standard of care in neurosurgery.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Article Information

Contributor Notes

Address reprint requests to: Garnette R. Sutherland, M.D., Division of Neurosurgery, University of Calgary, 1403 29th Street N.W., Calgary, Alberta, T2N 2T9, Canada. email: garnette@dcns.ucalgary.ca.

© AANS, except where prohibited by US copyright law.

TrendMD
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 83 7
PDF Downloads 131 94 0
EPUB Downloads 0 0 0
PubMed
Google Scholar