Spinal extradural arachnoid cysts (SEACs) are uncommon fluid collections that may compress the spinal cord. Although extradural, these so-called “cysts” usually communicate with the subarachnoid space through a pedicle, suggesting that they are diverticula of the arachnoid through the dura. However, the initiating cause and the forces that lead to cyst enlargement are incompletely understood.

SEACs have a predilection for the dorsal thoracic spine and are most common between 11 and 15 years of age. Although typically sporadic, SEACs have been associated with spinal trauma, prior neurosurgical procedures, arachnoiditis, neural tube defects, Scheuermann’s kyphosis, and the lymphedema-distichiasis syndrome. In symptomatic patients, SEACs are typically excised and the pedicle ligated to prevent reaccumulation.

We report the case of a child with multiple SEACs, found to have a retrocerebellar arachnoid cyst, cavum septi pellucidi, and cavum vergae. The co-occurrence of these abnormalities in a single patient tentatively suggests a common etiology and provides potential insight into the pathogenesis of each abnormality.
edema or supernumerary eyelashes (distichiasis). Workup for connective tissue disorders was unrevealing.

MRI of the brain, cervical spine, and thoracic spine was performed. In the spinal cord, two obvious cystic lesions were seen spanning T3–4 to T7–8 and T8–9, with significant mass effect on the thoracic spinal cord (Fig. 1A–C). The cysts eroded into surrounding bone and enlarged adjacent neural foramina. Obliteration of the epidural fat and fat capping at the superior and inferior poles (asterisks), clearly suggesting their extradural location. C: Axial T2-weighted section at the level of T4–5 exemplifies mass effect on the spinal cord by compression from the epidural arachnoid cyst (asterisk) posteriorly and associated widening of the neural foramina. D: Parasagittal T1-weighted image of the brain reveals a retrocerebellar cyst. A thick cyst wall is present (arrow). E: Axial T2-weighted section of the brain depicts the cavum vergae abnormality observed in the septum pellucidum (asterisk).

Operation

Laminotomy for pedicle ligation, cyst excision, and dural repair was performed. The incidental intracranial abnormalities were not symptomatic and thus were not treated. A midline skin incision was created between the T3 through T8 spinous processes, and the laminae were widely exposed. An osteoplastic laminectomy was performed from T4 through T8 bilaterally. Following removal of the bone flap, the cyst was visualized down to its inferior pole (with epidural fat capping: Fig. 2A).

The cyst was found to be thin-walled and tense (Fig. 2B). A septation ran through the center of the rostral cyst and a smaller daughter cyst was found buried in the epidural fat at the inferior pole, at the level of T8. Thus, in total, 3 cysts were identified: a rostral cyst, measuring 4.1 × 1.6 × 0.3 cm, with a pedicle at the T5 dorsal nerve root exit and dorsal midline; a midthoracic cyst, measuring 3.3 × 1.4 × 0.2 cm, with a pedicle at the T6 dorsal nerve root exit; and a caudal cyst, measuring 1.5 × 1.3 × 0.3 cm with a pedicle at the T8 dorsal nerve root exit (Figs. 2 and 3).

Each cyst was meticulously dissected from the dura until a pedicle was identified. The pedicle was ligated using small metal clips and transected between clips (Fig. 2B). Thereafter, the cysts were freed and each was removed.
en bloc. No neural elements were noted in the cysts. The pedicle stumps were then each oversewn with 4-0 Nurolon sutures to repair the dural defects in a watertight fashion, and subsequently covered with fibrin sealant. In this way, the cysts were completely removed and the thecal sac was not leaking CSF. The bone was replaced and secured with 4-mm titanium plates, and the wound was closed in layers.

Postoperative Course

In the immediate postoperative period, the patient’s strength and sensation improved. Histological examination showed a thin, fluid-filled simple cyst lined with meningothelial cells, consistent with an arachnoid cyst. The patient continued to improve without recurrence but had a slightly exaggerated thoracic kyphosis and mild myelomalacia on repeat MRI at the 3-month follow-up (Fig. 4). Otherwise, his strength returned and he was independently ambulating without difficulty. At 1 year of follow-up, the patient’s thoracic kyphosis progressed slightly. Otherwise, he denied pain or sensory complaints and reported normal strength and bowel/bladder function; a neurological examination showed no deficits. The patient was able to resume his normal life and refused further correction of his spinal deformity.

Discussion

Multiple SEACs are very rarely seen in children.\(^9,23\) Independently, arachnoid cysts are found incidentally in approximately 1.1% of the general adult population, the
majority in the middle cranial fossa. Cavum septi pellucidi and cavum vergae are cystic dilatations of the potential space between the leaflets of the septum pellucidum that are designated based on their position relative to the foramina of Monro. These structures are physiological in the fetus, and typically involute by 3 months of age. In adolescents and adults, the prevalence of cavum vergae approaches 1%–3%. These disease entities rarely co-occur, and to our knowledge our case is the first reported instance. In addition, the extreme forms—multiple large SEACs, a large retrocerebellar arachnoid cyst, and combined cavum septi pellucidi and cavum vergae—argue against the possibility that their co-occurrence is coincidental. Thus, while a single case report cannot definitively delineate causal relationships, we propose that a common cause links the findings in this patient.

The pathogenesis of SEAC, intracranial arachnoid cyst, and cavum vergae is incompletely understood. Persistence of the cavum vergae has been attributed to developmental defects of the corpus callosum or fornix (structures that are embryologically related to the septum pel- lucidum) or impaired resorption of CSF by septal veins. Intracranial arachnoid cysts are believed to be formed by one-way flow into the cyst through communication with the subarachnoid space and active (fluid-producing cells) or passive (diffusion) transport of fluid into the cyst.

To explain the pathogenesis of SEAC, the one-way flow theory posits that transient increases in CSF pressure force fluid into the cyst through its communication with the subarachnoid space. Retrograde flow into the subarachnoid space can be prevented by occlusion at the narrow pedicle, even under a large pressure differential. One-way communication between the subarachnoid space and the cyst has occasionally been demonstrated intraoperatively or through myelography. Bulk flow of fluid through active or passive transport mechanisms into the cyst has also been proposed, but the homogeneity of the cyst fluid in comparison to CSF argues against these theories.

Dural rents may be natural points of weakness in the dura, caused by the presence of arachnoid trabeculations that may proliferate abnormally or acquired etiologies, e.g., following neurosurgical procedures that violate the dura. Alternatively, this case provides evidence for a congenital origin. A shared developmental etiology could at once explain the persistence of the cavum septi pellucidi and cavum vergae and the coexistence of multiple, spatially separated meningeal lesions. The finding of SEACs in lymphedema-distichiasis syndrome further corroborates the role of congenital abnormalities. This autosomal dominant disease, characterized by lower-extremity lymphedema, a double row of eyelashes (distichiasis), SEAC (often multiple), cardiac defects, and cleft palate, is caused by mutations in \textit{FOXC2}, which encodes a transcription factor that is important in specification of paraxial cell fate. Other genes involved in morphological patterning, such as \textit{HOXD4}, have been linked with sporadic forms of SEAC. Taken together, the genetic evidence, and association with other midline abnormalities such as neural tube defects, cleft palate, cavum septi pellucidi, and cavum vergae (in this case), suggests that perturbations in midline patterning play a role in SEAC pathogenesis.

The congenital origin theory also may explain the dorsal thoracic predilection of SEACs, which has previously been attributed to increased hydrostatic pressure from the CSF column. Because the neural tube (and the spinal dura, derived from paraxial mesoderm) develops from ventral to dorsal, the dorsal midline appears to be particularly prone to maldevelopment. Having explained the dorsal preference, we attribute the thoracic location to the more anterior location of the spinal cord and the relative narrowing compared to the cervical and lumbar enlargements. Thus, the epidural potential space in the dorsal thoracic spinal column is greater and therefore provides more opportunity for cyst enlargement.

Ultimately, an understanding of the pathophysiology of SEACs will inform the optimal management. Asymptomatic cases may be managed conservatively as they appear to have an indolent natural history. Surgical treatment typically consists of two objectives: cyst excision and closure of the dural defect. We achieved good neurological outcome with complete excision of the cysts and repair of the pedicles. However, the patient developed postoperative kyphosis. This complication has been noted in most cases of multiple SEACs, perhaps due to the need for a

FIG. 4. Images obtained at the 3-month postoperative follow-up. A: Midsagittal T1-weighted MR image of the spine shows recurrence-free excision of the SEACs. B: Axial T2-weighted section at the level of T4–5 demonstrates resolution of the arachnoid cyst and consequent compression of the spinal cord. C: Midsagittal T2-weighted MR image of the spine shows the plane of panel B and spinal CSF flow as evidenced by flow voids in the spinal canal.
multilevel laminectomy and a possible underlying connective tissue disorder. In some cases, cyst aspiration alone has been attempted, usually with rapid reaccumulation. The relative importance of the two objectives has been debated; some argue that en bloc resection or excision of the cyst wall is sufficient (congruent with the theory of active transport), but in these cases the communication may have spontaneously closed. In other reports, recurrence can be frequent. Conversely, closure of the dural defect without complete resection (e.g., marsupialization or drainage, congruent with the theory of one-way flow) has yielded good outcome. These latter approaches are particularly useful when the cyst is tightly adherent to the dura or extends across numerous spinal cord levels, confounding excision. Preoperative and endoscopic intraoperative identification of the dural defect followed by closure through a limited laminectomy may be associated with decreased postoperative kyphosis and is theoretically sufficient for resolution of the cyst. In this case, such an approach may have obviated an extensive laminoplasty whose sizes and relative positions were unclear preoperatively. Endoscopes also have proven useful in select cases, and has been used to identify the dural defect or to create a wide communication with the thecal sac for cyst fenestration. Cystoperitoneal shunting has been proposed to identify the dural defect or to create a wide communication with the thecal sac for cyst fenestration. Cystoperitoneal shunting has been proposed to identify the dural defect or to create a wide communication with the thecal sac for cyst fenestration.

Cyst reaccumulation is rare but typically occurs within several years after surgery. Therefore, we recommend MRI at 3 months and 1 year following surgery (to assess for cyst reaccumulation and kyphoscoliosis). Thereafter, plain radiographs may be used annually for surveillance of kyphoscoliosis.

We have demonstrated the unusual case of a child with multiple thoracic extradural arachnoid cysts associated with a retrocerebellar arachnoid cyst and cavaum vergae. This case suggests that SEAC, at least in some instances, is a congenital midline abnormality, but additional reports will be needed for definitive association of these entities. Evaluation of the neuraxis for associated anomalies is warranted, particularly in those with atypical presentations (e.g., multiple cysts, large cysts, or family history).

Acknowledgments

We thank Ms. Jane Whitney for her work in illustration of Figure 3 in the manuscript.

References

27. O’Connell JEA: The cerebrospinal fluid pressure as an aetiological factor in the development of lesions affecting the central nervous system. Brain 76:279–298, 1953

Disclosures
The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author Contributions
Conception and design: all authors. Acquisition of data: all authors. Analysis and interpretation of data: all authors. Drafting the article: all authors. Critically revising the article: all authors. Reviewed submitted version of manuscript: all authors. Approved the final version of the manuscript on behalf of all authors: Cohen. Administrative/technical/material support: Cohen. Study supervision: Cohen.

Correspondence
Alan R. Cohen: The Johns Hopkins University School of Medicine, Baltimore, MD. alan.cohen@jhmi.edu.