Endoscopic thoracic discectomy

J. Patrick Johnson M.D., Aaron G. Filler, M.D., and Duncan Q. McBride, M.D.

Division of Neurosurgery, School of Medicine, University of California at Los Angeles, California

Object. Thoracoscopic discectomy is a minimally invasive procedure simulating a thoracotomy and is an alternative to the costotransversectomy and transpedicular approaches. In recent studies, authors have concluded that thoracoscopic discectomy is the preferred procedure; however, relative historical comparisons were difficult to interpret.

The authors conducted a prospective nonrandomized study in which they compared data on 36 patients undergoing thoracoscopic discectomy with eight patients undergoing thoracotomy between 1995 and 1999.

Methods. Patients affected with one- or two-level lesions underwent a thoracoscopic discectomy, and patients with three-level lesions or more underwent thoracotomy and discectomy. Data were collected on operative time, blood loss, chest tube duration, narcotic agent use, and hospital length of stay (LOS). Longer-term follow-up study of pain-related symptoms and neurological function was conducted.

Patients who underwent thoracoscopic discectomy had shorter operative times, less blood loss, a shorter period of chest tube drainage dependence, less narcotic usage, and a shorter LOS. These findings were statistically significant (p < 0.05) for narcotic usage and shorter LOS. Pain related to radiculopathy was improved by means of 75%, and no patients experienced worsened pain. In patients with myelopathy, there was an improvement of two Frankel grades in the thoracoscopic group and one Frankel grade in the thoracotomy discectomy group, but patients in the thoracotomy group were significantly worse preoperatively. One myelopathic patient from each group suffered a worsened outcome postoperatively, although this was not attributed to the method of surgery. The incidence of complications (minor and major) was 31% in the thoracoscopic group and greater than 100% (that is, more than one complication per patient) in the thoracotomy discectomy group.

Conclusions. One advantage to thoracoscopic discectomy is its reduced incidence of morbidity compared with thoracotomy, but its steep learning curve and unfamiliar surgical techniques make this procedure less practical for surgeons not performing it frequently. The more familiar costotransversectomy, transpedicular, and thoracotomy procedures remain viable alternatives for surgeons more experienced in these procedures.

Key Words: • thoracic spine • thoracoscopy • endoscopy • thoracotomy • disc herniation.
the 36 thoracoscopy group patients, there were 44 affected vertebral levels, and in the eight thoracotomy group patients, there were 36 affected levels (Table 1). Whereas 17 patients in the thoracoscopy group presented with radicular pain, no patient in the thoracotomy group presented with this symptom. Nineteen patients in the former group presented with myelopathy, and all eight patients in the latter group presented with myelopathy. In the thoracoscopy group the radicular symptoms had persisted for a mean of 12.6 months (range 2–60 months). Myelopathy had persisted for a mean of 8.3 months (range 2–34 months) in the thoracoscopy group and a mean of 14.2 months (range 2–48 months) in the thoracotomy group.

Selection for Thoracoscopic Discectomy or Open Thoracotomy

Patient selection was based on the number of spinal levels involved, the complexity of the lesions, previous trans-thoracic disc surgery, and the presence of OPLL.

All patients with one- or two-level thoracic disc herniations (33 patients) were treated with a thoracoscopic discectomy. The presenting symptoms or type of lesion (soft or calcified disc lesions) were not factors in the selection. There were three patients in whom a clinical diagnosis of discitis was made who underwent discectomy and in whom a biopsy specimen was obtained to debride the disc space.

Of those selected for thoracotomy, there were three patients with multilevel (three or more levels) thoracic disc herniation, and four patients with multi-segment OPLL. One patient underwent a thoracoscopic discectomy 6 months previously but suffered a recurrent disc herniation requiring surgery. Thoracoscopic reexploration was converted to an open thoracotomy because of dense adhesions at the site of the dura and disc interface that could not be safely dissected.

Thoracoscopic Surgical Techniques

Thoracoscopic procedures are well described in the literature. The procedures require induction of general anesthesia, and the placement of a double-lumen endotracheal tube allows collapse of the ipsilateral lung to perform the procedure within the empty chest cavity while the contralateral lung is ventilated. The patient is placed in a lateral decubitus position so that the ventilated lung hangs down and provides exposure to the ipsilateral thoracic cavity. In our cases standard anesthetic and monitoring techniques for thoracic endoscopic procedures were used. The patient is prepared for a thoracotomy in the event that conversion to this procedure is needed.

A plain anteroposterior radiograph is obtained after a marker is positioned on the chest wall to determine the precise placement level of the endoscopic ports (Fig. 1). Three endoscopic port sites are required: one in the posterior axillary line and two in the anterior axillary line.

Techniques for Thoracic Discectomy

The endoscope is usually inserted into the posterior axillary line portal, and the instruments are placed in the two ports in the anterior axillary line. The lung is retracted and may require coagulation and lysis of any adhesions to the parietal pleura. Additional retraction of the lung can be accomplished.
Endoscopic thoracic discectomy

Fig. 2. Upper Left: Lateral, right-side view of the thoracic spine. Circled area is the region magnified in Fig. 2 upper right through Fig. 4 left. Upper Right: Illustration of a rib head and adjacent disc space with the pleura already opened. Lower Left: Illustration of rib head removed showing the underlying pedicle and disc. Lower Right: Illustration of pedicle and endplates being drilled beneath spinal canal.

manually by rotation of the operating table to allow the lung to fall forward away from the vertebral column. Localization of the vertebral level is confirmed with an anteroposterior radiograph obtained while a Steinmann pin is inserted into the disc space. The adjacent segmental vessels are usually not divided, as they are located in the mid-portion of the vertebral body. Nevertheless, they can be mobilized and divided if necessary. The parietal pleura is opened widely over the rib head and over the disc space (Fig. 2 upper left and right). The proximal end of the rib and the disc space are colinear and help to orient the surgeon during the procedure. The proximal 2 cm of the rib is removed using a high-speed drill to expose the lateral surface of the pedicle and neural foramen (Fig 2 lower left and right). The neural foramen contains epidural fat and is relatively small with the segmental nerve and vessels traversing. The dura matter of the spinal cord is then exposed by removing the pedicle with a high-speed drill which also orients the surgeon during the remainder of the procedure. A round cutting bit (5 mm diameter) is typically used for drilling the bone.

The drilling of the vertebral body is the most critical stage of the procedure: there is the potential for injuring the patient while achieving adequate bone removal to decompress the spinal canal. The decompression requires drilling across the posterior aspect of the disc space and adjacent endplates, which essentially undermines the floor of the spinal canal and creates a tunnel (Fig. 3 left). The cortical bone on the ventral aspect of the spinal canal should remain intact until the drilling is completed, as it protects the spinal cord. Bleeding derived from the cancellous bone beneath the endplates can obscure visualization, and hemostasis during every stage of the procedure is essential. Bone wax applied with an endoscopic cotton-tip applicator will effectively control this bleeding. The drilling can be extended to the contralateral pedicle and verified by obtaining an intraoperative radiograph. A disc fragment that has migrated either cephalad or caudally requires additional drilling, which will adequately undermine the spinal canal for complete decompression. Once the drilling is completed, the floor of the spinal canal is then removed using small Kerrison rongeurs or sharp curettage, beginning at the site where the pedicle was initially removed. This often requires pulling soft disc mate-
rial or cracking calcified disc into the defect created by the bone decompression (Fig. 3 right). This procedure completely decompresses the ventral aspect of the spinal canal from a ventrolateral endoscopic exposure (Fig. 4).

Wound Closure and Postoperative Management. Using endoscopic guidance, a chest tube is placed through the posterior portal, and 20-cm H$_2$O suction is applied while the anesthesiologist reinflates the lung. The endoscopic ports are then removed, and the incisions are closed in anatomical layers with absorbable sutures. The patient is extubated at the end of the procedure, and a chest radiograph is obtained in the recovery room to ensure that the lung has been reinflated. Postoperatively, the patients are treated with aggressive pulmonary toilet. The chest tube is removed when drainage diminishes to less than 100 ml per day. Postoperatively oral narcotic agents are provided.

Open Thoracotomy for Thoracic Disc Lesions

In patients undergoing thoracotomy and discectomy a posterior thoracotomy incision of varying size (10–25 cm) is made, depending on the number of vertebral levels to be treated. The discectomy is then performed in essentially the same manner as the thoracoscopic discectomy. Postoperatively, intravenous narcotic therapy is undertaken and then oral narcotic agents are provided.

Clinical Evaluation and Follow-Up Examination

The operative and hospital data for each patient and procedure were evaluated and statistical significance determined using Student’s t-test. All patients underwent postoperative MR imaging to ensure that the decompression was successful. Follow-up clinical and neurological evaluations were conducted at 1, 3, 6, and 12 months postoperatively. The Oswestry Pain Scale questionnaire was administered to the patients with radicular pain by a third party interviewer, and a Frankel grade was assigned to patients with myelopathy based on the results of their neurological examination.
RESULTS

All patients in the thoracoscopic discectomy group underwent a one-or two-level procedure (Fig. 5 upper left and right), and all those in the open thoracotomy/discectomy group underwent multilevel procedures (Fig. 5 lower left and right) except one patient with a recurrent disc herniation in whom a thoracoscopic reexploration was converted to an open thoracotomy 6 months after the initial process. No fusion procedures were performed in either group.

The operative and hospital data were reviewed and compared for both groups (Table 2). The operative time, blood loss, and duration of chest tube drainage were lower for the patients who underwent thoracoscopy but were not statistically significant. The narcotic usage and hospital LOS were also less for patients in the thoracoscopy group and were statistically different (p < 0.05).

Outcomes in Patients With Radiculopathy

Based on comparing pre- and postoperative Oswestry Pain Scale scores patients with radiculopathy improved 75% in terms of pain status (Table 3). All patients experienced some improvement in radiculopathy symptoms, and three patients experienced only limited improvement (>25%); however, these three patients were satisfied and would undergo the procedure again. No patients experienced worsened status postoperatively.

Outcomes in Patients With Myelopathy Treated With Thoracoscopic Discectomy

The outcomes for these patients were mostly improved, as reflected by postoperative Frankel grades (Table 4). Myelopathy improved in seven (37%) of 19 patients as indicated by a mean improvement of two Frankel grades. Myelopathy was unchanged in nine patients (47%) including only one patient who remained Frankel Grade C after surgery with a 4-year history of chronic myelopathy. One patient (5%) worsened from a Frankel Grade C to B. This male patient had suffered longstanding paraparesis for 30 years after undergoing a laminectomy for a large calcified thoracic disc herniation; postlaminectomy he was paraplegic for 1 year. He experienced worsening paraparesis and spastic gait and underwent thoracoscopic discectomy that was uncomplicated except for removal of the intradural disc extension, which resulted in a cerebrospinal fluid leak. This was resolved successfully by using a muscle graft, fibrin glue, lumbar subarachnoid drainage, and maintaining the chest tube without suction.

Outcomes in Patients With Myelopathy Treated With Open Thoracotomy/Discectomy

The outcomes in these patients was mostly improved as indicated by postoperative Frankel grades (Table 4). Neurologically these patients were generally in worse condition preoperatively than those in the tho-

| TABLE 2 |
| Operative and postoperative data |
| --- | --- | --- |
| Thoracoscopic Discectomy | Open Thoracotomy |
| op time (min) | 212 (102–384) | 305 (165–442) |
| blood loss (ml) | 225 (100–600) | 380 (220–850) |
| chest tube (days) | 1.3* (0–18) | 4.1 (2–7) |
| narcotic usage (mg/day for 3 days†) | 6.5* (4–11) | 22.6* (10–42) |
| LOS (days) | 3.1‡ (1–21) | 5.4‡ (4–12) |

* p < 0.05, Student’s t-test.
† Estimated as milligrams equivalent of morphine sulfate.
‡ p < 0.05, Student’s t-test; when excluding the patient with chylothorax and 21 day LOS.

| TABLE 3 |
| Outcome in 17 patients with pain/radiculopathy who underwent thoracoscopic discectomy according to Oswestry Pain Scale score |
| --- | --- | --- |
| Type of Lesion | Preop | Postop | Change |
| herniated disc | 60 (40–80) | 14 (0–40) | 46 |
| discitis | 72 (60–80) | 25 (15–40) | 48 |
Thoracoscopic interventions for thoracic and pulmonary lesions have been well established as the procedures of choice compared with thoracotomy because of reduced rates of morbidity, LOS, and complications.11,16,17,30 Similarly in previous reports in which thoracoscopic discectomy was compared with thoracotomy and costotransversectomy, the authors concluded that thoracoscopy has distinct advantages due to the overall lowered morbidity rate.2,11,23,28,30 The authors compared operative time, blood loss, duration of chest tube drainage, narcotic usage, and LOS with cases in the literature dating back to the previous decade. Although they provided interesting comparisons, their comparisons lack validity because surgical and anesthetic procedures as well as and postoperative management practices were vastly different in the 1980s. For example, in a thoracotomy or costotransversectomy procedure for the treatment of an uncomplicated thoracic les-

TABLE 4

<table>
<thead>
<tr>
<th>Complication</th>
<th>Thoracoscopic Discectomy (%)</th>
<th>Open Thoracotomy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pneumonia</td>
<td>5 (14)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>intercostal neuralgia</td>
<td>5 (14)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>recurrent disc herniation</td>
<td>1 (3)</td>
<td>6 (75)</td>
</tr>
<tr>
<td>chylothorax</td>
<td>1 (3)</td>
<td>1 (13)</td>
</tr>
<tr>
<td>additional neurological deficit</td>
<td>1 (3)</td>
<td>1 (13)</td>
</tr>
<tr>
<td>death</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>11 (31)</td>
<td>12 (>100)*</td>
</tr>
</tbody>
</table>

* More than one complication per patient.

DISCUSSION

Anterior approaches to the thoracic spinal column have become established as the standard for appropriate treatment of vertebral disc lesions primarily anterior to the spinal cord.4,10,23,25,26,30 With the exception of the lateral extracavitary and transpedicular approaches, in which there is a posterolateral trajectory along the rib or pedicle, respectively, to the disc, the thoracotomy remains the gold standard for midline lesions that compress the spinal cord.12,18,22,23 Furthermore, the lateral extracavitary and transpedicular approaches do not provide direct visualization of lesions directly ventral to the spinal cord, which cannot always be removed safely without causing possible injury to the spinal cord. This is particularly true with midline calcified disc lesions.

Outcomes of Thoracoscopic Compared With Thoracotomy Discectomy

All cases of pneumonia resolved after antibiotic therapy and pulmonary toilet. Recurrent disc herniation occurred in an obese, young female patient who underwent thoracoscopic discectomy for primarily chest wall pain and a mild myelopathy. Improvement was demonstrated until, 6 months postoperatively, she experienced recurrent chest wall pain. Computerized tomography myelography revealed a calcified disc fragment that had not been present on her postoperative MR image. Thoracoscopic reexploration was converted to an open thoracotomy proce-

TABLE 5

<table>
<thead>
<tr>
<th>Frankel Grade (postop)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>thoracotomy group</td>
<td>A</td>
<td>1†</td>
<td>C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2</td>
<td>D</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thoracoscopy group</td>
<td>A</td>
<td>1†</td>
<td>B</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1</td>
<td>D</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Patient was worsened postoperatively.
† Patient was worsened postoperatively and later died of a pulmonary embolism.

dure, and the disc was removed uneventfully with improvement in her pain symptoms. Chylothorax developed in one patient in the thoracoscopy-treated group; however, no leak had been noted at surgery. There was a persistent high output of whitish fluid (consistent with chyle on laboratory testing) from the chest tube; the patient received no oral feedings and elemental total parenteral nutrition therapy for 2 weeks, which resolved the leak.
sion today the incision would be smaller and the operative time, postoperative pain medications, and LOS would likely be cut by 50%, compared with the same procedure a decade ago. Thoracoscopic discectomy has advantages that are mostly intuitive and obvious, because small incisions precluding rib retraction simply create less acute pain and reduce the risk of long-term postthoracotomy pain syndromes that are difficult to treat.6,16,17,23,31 It remains unlikely that a true randomized prospective study in which thoracotomy is compared with thoracoscopic discectomy will occur, because patients seeking minimal-invasive procedures from surgeons skilled in these techniques would agree to a thoracotomy as a primary procedure. Therefore, we have attempted to draw conclusions from our nonrandomized prospective study that are based on our experiences in developing a thoracoscopic program.15

The outcome data in our study indicate that patients who undergo thoracoscopic discectomy have a shorter LOS and require less medication, despite the small number of patients and the nonrandomized selection process. The selection process for thoracoscopic or thoracotomy procedures was based on the complexity of each lesion as well as our perceived ability to treat the lesion effectively and expeditiously with thoracoscopic. We conclude that one- and two-level thoracic lesions are ideally treated using endoscopic techniques, as the minimal incision-related pain and morbidity are markedly different from those associated with a thoracotomy. We also believe that a thoracotomy may be the best procedure in those patients harboring such complex multilevel thoracic lesions as OPLL in which the operative time and risks may exceed the perceived advantages of an endoscopic procedure. These lesions typically compress a contiguous segment of the spinal cord, rather than having focal herniated disc lesions and would require that several additional ports be placed, thus contributing to a greater operative time than a thoracotomy. Although a thoracoscopic for complex multilevel thoracic lesions is indeed feasible, it may not be practical if the procedure requires significantly greater time and potentially greater risk to the patient.

Advantages of Thoracoscopic Discectomy

Thoracoscopic discectomy procedures for thoracic lesions were first reported in the early 1990s.13,21,28,31 Since then the authors of a limited number of clinical series have reported experiences in thoracoscopic disc surgery; experiences with thoracic vertebral reconstruction procedures have also been reported.7,8,13,23,27,30,31 These techniques largely simulate an open thoracotomy procedure by virtue of the trajectory through the chest cavity and the similar-fashion decompression of the spinal canal. The minimum amount of tissue retraction required in the endoscopic procedure has reduced postoperative pain and the LOS in our patients, and this is supported by the results of the present study in which we compared similar but more complex cases harboring thoracic disc lesions. Although the operative time was not statistically different between the groups, the overall data include patients treated early in our series and the learning curve; operative time is now typically 2 hours for a single-level thoracoscopic discectomy. The similar improvement is likely for surgery-related blood loss and days of chest tube drainage for the latter patients.

Disadvantages of Thoracoscopic Discectomy

The primary disadvantages of thoracoscopy are related to the way in which the procedure is performed: endoscopic visualization, even with the latest three-dimensional technology, still depends on television projections where depth of field does not compare with direct or microscopic vision; the three-dimensional glasses are sufficiently inconvenient that many surgeons still use two-dimensional endoscopes; cleaning bone dust from the endoscope frequently during the drilling procedure significantly interrupts the flow of the procedure; the ports placed in the chest wall significantly restrict the surgeon’s ability to manipulate the instruments, and they act as a fulcrum rather than the usual unlimited degrees of motion allowed within a thoracotomy incision; the instruments are usually longer and more awkward to use; and it is also difficult for the surgeon to use instruments in each hand simultaneously to perform complex tasks, and he or she must often rely on an experienced assistant. Because of these points and the need for acquiring difficult new visual–motor surgical skills, a high level of new skills are required for the surgeon to perform a surgical procedure as complex as a thoracic discectomy.9,20 These skills are challenging to the surgeon who performs them regularly and may be impractical for the surgeon performing them infrequently. The learning curve is steep, as has been confirmed by surgeons performing them frequently, and formal training is recommended. It also seems appropriate that a sufficient number of cases be performed annually to maintain necessary skills effectively.

CONCLUSIONS

Thoracoscopic discectomy procedures have several distinct advantages over alternative procedures primarily related to reduced surgery-related pain, morbidity, LOS, and complications. The need for adequate training and consistent annual surgical experience to maintain effective skills are necessary for surgeons performing thoracoscopic. The alternative costotransversectomy, transpedicular, and transthoracic procedures clearly remain viable and effective techniques for surgeons experienced in these procedures and have limited experience with thoracoscopic discectomy procedures.

Acknowledgments

The authors wish to thank Josh Emerson for his artistic contributions and Samantha Phu for her assistance in preparing this manuscript.

References

Manuscript received September 6, 2000. Accepted in final form September 13, 2000. Address reprint requests to: J. Patrick Johnson M.D., Division of Neurosurgery, UCLA Medical Center, Box 956901, Los Angeles, California 90095–6901. email:jpjohnson@mednet.ucla.edu.