Syringomyelia occurs in a number of clinical settings, most commonly following trauma, or in association with a Chiari malformation. Other causes include infectious or inflammatory arachnoiditis, tumors of the spine and spinal cord, posterior fossa tumors, and cervical spondylosis. Syrings typically appear as well-defined discrete cavities containing fluid that is isointense to CSF on all sequences. The pathophysiology of syringomyelia is controversial, but experimental models and clinical studies have implicated alterations in CSF flow as a significant factor in the development and progression of certain types of syringomyelia. The hypothesis that CSF normally flows along perivascular spaces within the parenchyma of the spinal cord to the central canal is supported by experimental studies. Variations in patency of the central canal of the spinal cord have been associated with the development of different types of syringomyelia and likely play a role in determining the location of a syrinx remote from a focus of CSF obstruction as is commonly seen in the Chiari I malformation. The reversibility of syringomyelia following restoration of CSF pathways has been well documented in patients undergoing posterior fossa decompression for Chiari malformation, removal of extradural masses, and lysis of adhesions.

We identified five myelopathic patients with no history of spine trauma who had underlying conditions associated with alterations of CSF flow. These patients had enlargement and T prolongation of the cervical spinal cord without cavitation, evidence for altered or obstructed CSF flow, and no evidence of intramedullary tumor or a spinal vascular event. We hypothesized on the basis of historical, imaging, and operative findings that obstruction to normal CSF flow pathways resulted in the cord enlargement and MR signal abnormalities that reversed following restoration of patency of CSF pathways. We refer to this MR appearance as the “presyrinx” state and stress the importance of timely intervention to limit progression to syringomyelia.
METHODS

Over a 2-year period, five patients who met the following criteria were identified prospectively: clinical evidence of myelopathy, no history of spinal cord trauma, enlargement of the cervical cord with parenchymal T_1 and T_2 prolongation but no frank cavitation, and no evidence of intramedullary tumor or a spinal vascular event as the cause of cord signal changes. No patient had evidence of active inflammatory or demyelinating disease or received steroid therapy. In addition, all patients had obstruction to CSF flow at the level of the foramen magnum or the spinal epidural or subarachnoid space based on historical and/or imaging features. Our patients included two males and three females and ranged in age from 2 to 77 years. Clinical records and imaging studies for these patients were reviewed.

All patients underwent preoperative imaging on a 1.5 T MR system. Imaging sequences included conventional spin-echo T_1-weighted images (500/14 [TR/TE], 4 mm thick, 256 × 256 matrix) and fast spin-echo T_1-weighted images (3000/105eff, [TR/TE], echotrain length 8, 3 mm thick, 256 × 256 matrix) obtained in the sagittal plane in addition to axial T_1-weighted images. A proton density–weighted sequence was not obtained since it is not part of our routine spine imaging protocol. Contrast-enhanced images were obtained in three patients and included sagittal and axial T_1-weighted sequences. Magnetic resonance examinations were conducted on all patients after surgical intervention and included, at a minimum, sagittal T_1, and fast spin-echo T_1-weighted sequences. In addition, one patient underwent CT myelography preoperatively, and one patient underwent CT myelography postoperatively. Only one patient had an MR flow study performed preoperatively, utilizing a cine phase contrast technique (24/minimum, [TR/TE], flip angle 30°, 256 × 128 matrix, flow compensation and peripheral gating applied, velocity encoding gradient = 5 cm/second to evaluate CSF flow at the foramen magnum.

RESULTS

A summary of our patients’ histories, as well as clinical and imaging findings, is presented in Table 1. All patients underwent MR imaging of the cervical spinal cord to evaluate myelopathic symptoms, although in one case (Case 1) headaches were the dominant clinical feature. The clinical presentations were similar to that of patients with central cystic myelopathy,22, 23 including increasing loss of motor function or weakness in all patients, sensory changes in two patients, increased spasticity in two patients, and radicular pain in one patient. The conditions that predisposed our patients to alterations in CSF flow dynamics and myelopathy included the following: Chiari I malformation with severe tonsillar herniation; prior osteomyelitis complicated by epidural abscess, meningitis and arachnoiditis; basilar arachnoid adhesions related to prior head trauma, traumatic subarachnoid hemorrhage, and posterior fossa surgery; subarachnoid hemorrhage complicated by meningitis leading to severe hydrocephalus and tonsillar herniation; and rheumatoid arthritis with severe cervical spondylosis and spinal stenosis accompanied by basilar impression. In all five cases, the lesion occurred in the cervical spinal cord.

Results of preoperative MR imaging demonstrated a variable degree of enlargement of the cervical cord in all patients. All patients had abnormal T_1 and T_2 prolongation of the cervical spinal cord signal extending over a variable distance. The T_1 signal was not as low as CSF in any case, and the margins of the T_1 signal abnormality were not sharply defined. No frank cavitation was observed in any

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Figure No.</th>
<th>Age (yrs)</th>
<th>Sex</th>
<th>History</th>
<th>Clinical Condition Preop</th>
<th>Previous Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2, M</td>
<td></td>
<td>Chiari I malformation</td>
<td>severe headaches, progressive clumsiness in limb movements over the course of 1 yr</td>
<td>limited decompression (suboccipital craniectomy) for Chiari I malformation</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>69, F</td>
<td></td>
<td>polymyalgia rheumatica, previous epidural abscess associated with osteomyelitis of the cervical spine</td>
<td>progressive quadriplegia, progressive loss of sensation & motor control in hands</td>
<td>decompression of epidural abscess via C-6 laminectomy 18 mos earlier</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>41, M</td>
<td></td>
<td>remote history of head trauma; basilar arachnoid adhesions; history of hydrocephalus</td>
<td>progressive neck pain and spastic quadriplegia</td>
<td>posterior fossa decompression VP shunt for hydrocephalus</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>40, F</td>
<td></td>
<td>Grade III SAH caused by aneurysm status post GDC coil embolization; course complicated by S. epidermidis meningitis</td>
<td>neck pain and quadriplegia</td>
<td>coil embolization of aneurysm, external ventricular drainage of CSF</td>
</tr>
<tr>
<td>5</td>
<td>NS</td>
<td>77, F</td>
<td></td>
<td>severe cervical spondylolysis & mild basilar impression</td>
<td>progressive weakness in both arms, right greater than left, & hand numbness; spasticity & incoordination of legs; no neck pain</td>
<td>none</td>
</tr>
</tbody>
</table>

* FM = foramen magnum; SAH = subarachnoid hemorrhage; GDC = Guglielmi detachable coils; NS=not shown; VP = ventriculoperitoneal; S. epidermidis = Staphylococcus epidermidis.

TABLE 1

Summary of Patient Data

N. J. Fischbein, et al.
patient. Mild parenchymal enhancement of the upper cervical cord was observed in one case; this patient had no evidence of an acute clinical decline or systemic infectious or inflammatory condition, and her CSF profile was benign.

Evidence of a discrete level of obstruction to normal CSF flow could be identified pre-operatively in all but one patient. The patient in Case 1 (Fig. 1) had a Chiari I malformation with markedly narrowed CSF spaces at the level of the foramen magnum; a cine phase-contrast CSF flow study showed markedly restricted flow of CSF through the foramen magnum. The patient in Case 2 (Fig. 2) underwent preoperative CT myelography that showed a decreased flow of contrast around a swollen cervical spinal cord and a myelographic block at the C3–4 level caused by a large ventrolateral osteophyte and possibly adhesions as well; subtle increased density of the cord on delayed images was also found. The patient in Case 4 (Fig. 3) harbored a markedly enlarged fourth ventricle and tonsillar herniation which resulted in obstruction to flow at the level of the foramen magnum. The patient in Case 5 had multilevel spondylostenosis and marked compression at the level of the foramen magnum due to basilar impression and atlantoaxial subluxation. In all these cases, the level of obstruction was rostral to the level of cord signal changes. The level of obstruction in Case 3 was not clear preoperatively; this patient had a history of prior posterior fossa surgery and basal adhesions that were most likely causing obstruction to flow at the level of the foramen magnum, but he also had a mild congenital spinal stenosis with superimposed acquired stenosis at C5–6 and C6–7. In this case, it is unclear whether the spinal cord signal changes were only caudal or both rostral and caudal to the level of obstruction to CSF flow.

Four of five patients underwent operative intervention directed at restoring patency of CSF pathways. The patient in Case 3 (Fig. 4) underwent laminectomy and intradural exploration for placement of a syringopleural shunt, but this procedure was aborted because no syrinx was found (vide infra). Procedures performed are summarized in Table 1. Only the patient in Case 3 underwent intraoperative ultrasound evaluation of the spinal cord. Postoperatively, all patients experienced clinical improvement to varying degrees.

Postoperative MR imaging was performed in all patients from 1 week to 1 year after surgery. In all cases the postoperative images showed a reduction in cord caliber, as well as improvement or resolution of T1 and T2 signal abnormalities. One patient (Case 3, Fig. 4) experienced a subsequent deterioration in his clinical status after having demonstrated some improvement in clinical and imaging findings in the immediate post-operative period after lower cervical laminectomy and myelotomy. A second postoperative scan six weeks after surgery showed an increase in central parenchymal T1 prolongation. No definite evidence was found for recurrent CSF obstruction at the surgical level, but the cord remained deformed at the level of the foramen magnum, and it was considered likely that obstruction to normal CSF flow remained at the foramen magnum level that had not been addressed surgically; a cine phase-contrast CSF flow study was not performed at this time, because this sequence was unavailable at the rehabilitation hospital where the patient was imaged. No further intervention was undertaken after that study for psychosocial reasons, and the patient was examined by his neurosurgeon 10 months later because of symptom progression. A third postoperative study at this time revealed progression to frank syrinx formation. At this time a syringopleural shunt was placed, but the patient experienced only minimal symptomatic improvement.

DISCUSSION

The understanding of the pathogenesis of syringomye-
Fig. 1. Patient 1. A: Sagittal T₁-weighted image (600/8/2) shows a Chiari I malformation with tonsillar herniation to the mid-C-2 level and a pointed configuration to the cerebellar tonsils (arrow). B: Sagittal T₂-weighted image (3000/105 Eff/3) shows T₂ prolongation within the spinal cord parenchyma at the C2–3 level. C: Sagittal images from a cine phase-contrast flow study in systole (left) and diastole (right), sensitized to flow in the superior-to-inferior direction (see text for parameters). Note the absence of flow-related phase change at the level of the foramen magnum, as well as prominent tonsillar motion in both systole and diastole, with the curved arrows indicating the position of the tonsillar tips in systole and diastole. Subtle linear low signal is present anterior to the tonsil in diastole (right panel, straight arrow), indicating minimal flow between the fourth ventricle and the spinal subarachnoid space below the level of the foramen magnum. D: Sagittal T₁-weighted image (500/14/3) obtained 6 weeks after limited extradural decompression of the foramen magnum. Cord expansion and parenchymal hypointensity (curved arrows) are present in the upper cervical cord. E: Sagittal T₁-weighted image (3000/105 Eff/3) corresponding to D shows marked upper cervical cord T₁ prolongation. This was presumed related to ongoing or increased obstruction to CSF flow. F: Axial T₁-weighted image (500/13/2) shows that the central parenchymal signal abnormality is somewhat ill-defined and not as low in signal intensity as CSF. G: Cine phase-contrast flow study sensitized to motion in the superior-to-inferior direction (see text for parameters) shows prominent downward motion of the brainstem and cerebellar tonsils (which appear white), but no definite flow of CSF at the foramen magnum. The tip of the tonsil is indicated (curved arrow). H: Sagittal T₁-weighted image (600/8/2) following aggressive decompression of the foramen magnum, including duraplasty, lysis of arachnoid adhesions, and partial tonsillar resection shows the upper cervical cord appears normal caliber. Minimal parenchymal hypointensity persists in the upper cervical spinal cord (curved arrow). I: Sagittal T₂-weighted image (4000/105 Eff/2) corresponding to H shows near-complete resolution of previously seen abnormal T₂ prolongation. J: Cine phase-contrast flow study sensitized to motion in the superior-to-inferior direction (see text for parameters) no longer shows abnormal downward motion of the brainstem or residual cerebellar tonsils. CSF flow is evident at the foramen magnum (curved arrows).
lia has been significantly advanced by the studies of Milhorat, et al.22–24 On the basis of detailed histopathological findings, they distinguish among three types of spinal cord cavities: 1) dilations of the central canal that communicate directly with the fourth ventricle (communicating syrinxes); 2) noncommunicating dilations of the central canal that arise below a syrinx-free segment of spinal cord; and 3) extracanalicular syringes that originate in the spinal cord parenchyma and do not communicate with the central canal. By correlating with clinical parameters, they were able to associate these distinct cavitary patterns with different mechanisms of pathogenesis. Communicating syringes were found in association with hydrocephalus and were caused by obstruction of CSF circulation distal to the cord.
to the outlets of the fourth ventricle. Noncommunicating syringes were associated with disorders of CSF dynamics in the spinal subarachnoid space, such as the Chiari I malformation, cervical spinal stenosis, basilar impression, and arachnoiditis. Extracanalicular or parenchymal syringes were typically found in the watershed area of the spinal cord, associated with conditions that cause direct injury to spinal cord tissue such as trauma, infarction, and hemorrhage. Additionally, they found that concentrically enlarged central cavities (as are seen with communicating or noncommunicating syringes) either were asymptomatic or were associated with bilateral, nonspecific neurological findings, such as spasticity, weakness, and segmental pain.

The theory that noncommunicating syringomyelia is related to alterations in CSF flow has received experimental support. Several groups of investigators have shown in animal models that, under normal circumstances, CSF flows from the spinal subarachnoid space into perivascular spaces of the spinal cord and from there along the interstitial spaces toward the central canal. This net unidirectional flow is hypothesized to be driven by both pulsatile and bulk mechanisms, although it is unclear whether the impetus to flow is actual arterial pulsations within the spinal cord or the transmission of intracranial arterial pulsations to the CSF in the spinal subarachnoid space. Both accentuation of arterial pulsations during systole as well as redirection and accentuation of CSF pulsations transmitted through the subarachnoid space are theorized to account at least in part for the formation and expansion of cysts in noncommunicating types of syringomyelia, although additional experimental work is necessary to investigate these hypotheses. The role of adhesive arachnoiditis in syrinx formation has also been investigated experimentally. Subarachnoid block caused by adhesive arachnoiditis may initiate the formation or enlargement of a syringomyelic cavity, perhaps by redirecting and/or accentuating transmission of the force of systolic arterial pulsations.

The development of noncommunicating syringomyelia, or focal central canal dilation remote from the site of CSF obstruction may relate to variations in the patency of the central canal among individuals. Milhorat, et al., showed that noncommunicating syringes were defined rostrally as well as caudally by stenosis of the central canal. An autopsy study of 232 patients without spinal cord pathology by this same group indicated that stenosis of the central canal correlates with the age of the patient. Varying degrees of stenosis were present at one or more levels in 3% of infants under 1 year of age, 88% of adolescents and young adults (aged 13 to 29 years), and 100% of those over age 65. They concluded that the incidence and extent of central canal stenosis in humans almost certainly affects the clinical features of syringomyelia. Theoretically, a disturbance of CSF circulation in the spinal subarachnoid space forces redirects fluid through the interstitial spaces of the spinal cord and eventually into a patent segment of the central canal. Focal obliteration of the central canal above this level prevents communication between the syrinx and the fourth ventricle, initiating the conditions required for establishment of noncommunicating syringomyelia.

Clinical studies also support the importance of CSF flow patterns and subarachnoid space pressure waves in the initiation and propagation of syringomyelia. Oldfield, et al., studied seven patients with Chiari I malformation and syringomyelia by using MR imaging and intraoperative ultrasound. On the basis of their observations, they suggest that the development and progression of noncommunicating syringes associated with the Chiari I mal-
formation are due to obstruction to the normal rapid to-and-fro movement of CSF across the foramen magnum by tonsillar ectopia and the ventral position of the lower brainstem. During systole in the Chiari I malformation, brain expansion is accommodated by abrupt caudal movement of the tonsils. This downward, piston-like systolic tonsillar movement can be shown on direction-sensitive cine phase contrast MR sequences (Fig. 1C). Rapid downward tonsillar movement, perhaps in concert with the deposition of fourth ventricular CSF into the spinal sub-

Fig. 4. (Patient 3)
A: Sagittal T2-weighted image (4000/108 Eff/4) obtained when the patient had no symptoms referable to the spinal cord shows a mild dilation of the obex/proximal central canal and central T2 prolongation within the upper cervical cord parenchyma.
B: Sagittal T2-weighted (left panel, 600/11/2) and T1-weighted (right panel, 3000/96 Eff/2) images obtained 1 year later when the patient had developed progressive neck pain and spastic quadriplegia show striking cord expansion and both T1 and T2 prolongation within the cervical spinal cord. The areas of abnormal signal within the cord approach but are not quite equal to CSF in intensity.
C: Axial T1-weighted image (6500/9/3) shows irregularly margined central parenchymal hypointensity, although this area is hyperintense compared with CSF in the spinal canal. These images (A–C) were interpreted as consistent with syrinx by the neurosurgeon, and the patient was taken to the operating room for shunt placement.

Intraoperatively, the cord was noted to be enlarged and “boggy.” A myelotomy was made at the C-6 level, and a small amount of fluid exuded from the cord surface, but no syrinx was encountered. Intraoperative ultrasound (not shown) confirmed the lack of frank cavitation.

D: Sagittal T2-weighted image (3500/96 Eff/3) obtained two days postoperatively shows evidence of recent C6–7 laminectomy. The cord is notably reduced in overall caliber compared with the pre-operative study, and the signal has normalized at the myelotomy site (arrow).

E: Repeat T2-weighted image (2500/105 Eff/3) obtained 8 days later shows further regression of signal abnormality and further reduction of cord caliber.

F: Sagittal T2-weighted image (3894/112 Eff/1) obtained 1 month later shows an increase in central T2 prolongation within the cervical spinal cord, as well as an increase in cord caliber. The patient was doing fairly well in rehabilitation and did not desire further intervention. The patient was lost to follow up for 10 months.

G: Sagittal T1-weighted image (5008/3) obtained 11 months following surgery demonstrate further enlargement of the cervical and upper thoracic spinal cord. The cord centrally is hypointense, and multiple septations are present (arrow), consistent with syringomyelia. The patient clinically was severely quadriplegic and had lost control of bowel and bladder function. After this image, surgery was performed, during which a large syrinx was encountered and a syringopleural shunt was placed (not shown).
Syringomyelia is commonly observed in the posttrauma setting. In the case of trauma, the inciting event for syrinx formation is focal cord injury, although the propagation of a posttraumatic syrinx may certainly be related at least in part to alterations in CSF flow. In trauma patients, a condition termed progressive posttraumatic myelomalacic myelopathy (PPMM) has been described that is considered to represent a continuum of interrelated disease processes that may precede formation of a confluent cyst. Patients with PPMM are generally clinically indistinguishable from those with cystic myelopathy, and, in some cases, have been reported to have a microcystic myelopathy. The presence of localized arachnoiditis at the level of trauma leading to spinal cord tethering is considered to play an important role in the pathophysiology of PPMM, related at least in part to changes in local CSF dynamics. Analogous to the situation of PPMM, our patients had myelopathic symptoms associated with conditions that predisposed them to syrinx formation. To our knowledge, this has not been documented in patients without a history of trauma.

Specifically, the underlying conditions in our patients included Chiari I malformation, cervical spondylolisthesis, and arachnoiditis, all of which are associated with both impedance to normal CSF flow and syrinx formation. All of our patients presented with nonspecific myelopathic symptoms, similar to patients described by Milhorat et al., with non-communicating syringomyelia, and demonstrated findings on MR images similar to those seen in cases of progressive posttraumatic myelomalacic myelopathy, including cord enlargement and T1 and T2 prolongation, with the T1 signal not as low as that of CSF and not sharply margined. In the distinction between cystic and noncystic myelopathy, proton density-weighted images may be useful, since a cyst would be expected to be isointense with CSF whereas myelomalacic or microcystic changes would likely be hyperintense; however, proton density-weighted images may not be completely reliable, since a cyst may be hyperintense to CSF on a proton density-weighted image because of dampened CSF pulsations or a slightly elevated protein content. In addition, with the advent of fast spin-echo imaging of the spine, double-echo spin-echo sequences have been dropped from many imaging protocols, and we do not perform it routinely at our institution. Axial T1-weighted images may also be useful in the distinction of cystic from noncystic changes. Intraoperative sonography is certainly a useful adjunct in the assessment of cystic versus noncystic myelopathy, but the performance of this examination varies among institutions and among individual surgeons and requires operative exposure.

Findings strongly supporting disturbance of CSF flow were observed on preoperative imaging studies in four of our five patients, and the surgical procedures performed were either directed at restoring patency of CSF pathways or had that end effect in all patients. We do not have direct information on the status of the central canal in our patients, but we hypothesize that it was not patent and, thus, CSF that was driven into the spinal cord parenchyma by alterations in normal flow patterns was unable to enter the central canal to form a syrinx (Figs. 5 and 6). After improvement or reconstitution of CSF pathways, all patients demonstrated stabilization or improvement in clinical
“Presyrinx” state

Additional postoperative MR examinations showed both a reduction in cord caliber and an improvement in cord parenchymal signal abnormalities. Whether the signal alterations represent edema or microcystic change or both is unclear, since pathologic specimens are not available from these patients. A direct traumatic injury to the cord does not appear to be a necessary prerequisite for the development of this condition. A difficulty with this hypothesis is explaining the later development of frank cavitation in Case 3, however, it is possible that partial recanalization of the central canal may have occurred, followed by paracentral dissection around a stenotic segment. Alternatively, the myelotomy performed during the initial surgery may have created a pathway along which a syrinx could form and then extend.

Jinkins, et al., recently described three patients with clinically progressive posttraumatic syringomyelia in whom extensive MR signal change on T₂-weighted images in the spinal cord superior to a well-defined syrinx was found to be an ancillary sign of disease progression. After shunting of the syrinx, the parenchymal T₂ hyperintensity resolved, and neurological deficits stabilized or improved. They postulated that the T₂ hyperintensity represented fluid escaping from the cyst or edema caused by as yet undefined pathologic alterations in the spinal cord adjacent to the cyst. In these cases, a definite obstruction to flow of CSF was not described, and the intervention taken (syrinx shunting) was not aimed at restoring patency of CSF pathways. It is possible that the enlarged cord caused relative obstruction of normal CSF flow pathways, resulting in a “presyrinx” condition cranial to the already formed syrinx cavity. In a case that presented following our initial report, we observed extensive MR signal change superior to a frank syrinx in a patient with exten-
sive arachnoid adhesions due to neonatal meningitis (Fig. 7) who presented with gradually progressive myelopathy, supporting the idea of a continuum between the “presyrinx” state and syringomyelia and showing that trauma is not a necessary precondition for the appearance described by Jinkins, et al.15

In further support of our hypothesis, the reversibility of cord signal abnormality associated with obstruction to normal CSF flow has been demonstrated in a case of acquired tonsillar herniation caused by probable spontaneous intracranial hypotension.20,38 In this case, the cervical cord was enlarged and demonstrated T_1 and T_2 prolongation without frank cavitation, consistent with the “presyrinx” state. After spontaneous resolution of the patient’s condition (presumably because of closure of an occult CSF leak), the cerebellar tonsils returned to a normal position, and the cervical cord caliber and signal reverted to normal. The patient was not myelopathic but did experience occipital and neck pain. The lack of myelopathic symptoms is not inconsistent with presyrinx physiology, since even patients with frank syringomyelia (typically of the central cavitary type) may be asymptomatic.23

Because surgical intervention was performed that restored or improved CSF flow pathways in all our patients, we are unable to prove that they would have progressed to frank syrinx formation. The implication that syrinx formation would have occurred if the patients were left untreated is justified by the following three considerations: first, the underlying conditions in our patients all have a known association with syringomyelia; second, in one patient (Case 3) who initially responded to surgical intervention with marked improvement in cord enlargement and signal abnormality, clear-cut syrinx formation occurred during the follow-up period, presumably because the underlying obstruction to CSF flow had not been fully addressed by the surgical procedure performed; and third, the recent observations of Jinkins, et al.,15 which suggest reversible T_2 changes were considered to predict frank syrinx formation. We therefore propose the use of the term

Fig. 7. \textit{Left}: Sagittal T_1-weighted image (500/16/2) shows irregularity of the spinal cord at the C-2 level, and a change in caliber of the cord at the T3–4 level. The cord appears mildly hypointense below T3–4, and there is no evidence of frank cavitation. \textit{Center}: Sagittal fast–spin echo T_2-weighted image (3400/102 Eff/2) shows adhesions at the C-2 and T3–4 levels (arrows), with a secondary arachnoid cyst (right) dorsal to the cord at the C-2 level. The cord shows increased T_2 signal from C-3 caudad. These “presyrinx” changes are presumably due to alterations in CSF flow caused by the postinflammatory adhesions. \textit{Right}: More inferiorly, a sagittal T_1-weighted image (500/16/2) through the thoracic spinal cord shows evidence of frank syrinx formation, with clear-cut cavitation and internal septations (arrows).

Fig. 8. \textit{Left}: Sagittal T_1-weighted image (500/16/2) shows an abnormally enlarged and hypointense cervical spinal cord. The basal cisterns at the level of the foramen magnum are poorly defined, suggesting that there may be abnormal soft tissue consistent with scarring and arachnoiditis at this level. \textit{Right}: A sagittal fast–spin echo T_2-weighted image (3000/108 Eff/3) shows abnormal hyperintensity throughout the cervical spinal cord. The enlargement and signal characteristics are consistent with an edematous cord. There is no frank cavitation, and no focal enhancement was present after gadolinium injection (not shown).
Since the report of these initial five patients,8 we have identified three additional patients who we think illustrate important features of the “presyrinx” spectrum and provide further support for consideration of this entity. One is described above and is shown in Fig. 7. A second patient with a history of remote surgery for a brain tumor developed a progressive myelopathy and appeared to have basal arachnoiditis and edema of the cervical spinal cord on MR (Fig. 8). His symptoms improved following foramen magnum decompression and lysis of adhesions, but a follow-up MR has not been obtained. Finally, we have identified an interesting patient with a history of parenchymal hemorrhage due to a cerebellar arteriovenous malformation and subsequent development of a posterior fossa cyst who was treated with cyst-peritoneal shunting. When the shunt obstructed, the cyst enlarged, the patient became progressively myelopathic, and imaging demonstrated a frank cervical syrinx. When the shunt was revised and the cyst decompressed, the patient developed low pressure headaches and evidence of intracranial hypotension9,34 but her macrocysts regressed and her cord developed a “presyrinx” appearance (Fig. 9). Subsequent scans revealed fluctuation between a frankly cavitary lesion and an enlarged, edematous-appearing cord depending on the size of the cyst and functional status of the cyst-peritoneal shunt. We feel this case is important in demonstrating the delicate dynamic that may exist between a pre-cavitary and a frankly cavitary state. This case is also problematic, however, in that it also demonstrates the role of central canal patency is probably quite complex and may not always be the dominant mechanism for entry into a “presyrinx” state. Unlike patient 3, whose progression to frank syrinx may have been influenced by a prior myelotomy, this patient had no history of spinal cord surgery.

We have also considered other possible causes of the reversible cord enlargement and T_2 prolongation identified in our patients. It seems unlikely that arterial ischemia plays a significant role in the pathogenesis of the presyrinx state based on the fact that the imaging abnormalities did not conform to a vascular territory and were reversible as assessed by postoperative imaging. Venous ischemia could have played a role in cord enlargement and signal changes, analogous to the pathophysiology of spinal dural arteriovenous fistula, but no abnormal veins were identified at preoperative imaging or intraoperatively. The lack of identification of macroscopic abnormal veins does not, however, exclude a role for venous ischemia. In the setting of trauma, occluded intramedullary veins have been identified in degenerated segments of cord.43 In the nontraumatic setting, it is possible that pressure changes in the epidural venous plexus in association with disturbances of CSF circulation lead to an increase in spinal venous pressure and accumulation of fluid in the spinal cord.18 Venous ischemic changes are also known to be reversible. However the venous drainage of the spinal cord is quite rich, and the mechanism by which venous ischemia would have occurred in our patients is not clear. Therefore, although we propose that the “presyrinx” state is fundamentally one of altered CSF flow parameters, we do recognize that a contribution of venous ischemia may be present as well and that sorting out these relationships will require further study.

The relationship between the level of the block to CSF flow and the location of the presyrinx lesion also warrants consideration. As most of our cases had high cervical or foramen magnum blockages to CSF flow, it is not surprising that the spinal cord parenchymal signal changes that...
we observed developed caudal to the block. Pathophysiologically, this is most likely related to fluid entering the cord below the level of the block and then tracking cephalad in cord parenchyma and/or the central canal to circumvent the block; however, in the experience of Jinkins, et al., 15 which we consider an analogous situation, the presyrinx lesion extended rostral to the level of obstruction. In the setting of trauma, syringes most commonly extend superiorly from the site of injury, although superior and inferior extension, and even inferior extension alone, have been observed. This may relate to the fact that the cervical cord expands more easily than the thoracic cord. 17,32,48

An important but as yet unexplained aspect of this phenomenon is why we do not see these MR findings more frequently in cases of Chiari I malformations and basal arachnoiditis, as these are not uncommon conditions. Because patients in the presyrinx state may have minimal clinical symptoms or even be asymptomatic, they may not come to medical attention until frank cavitation and more severe symptoms have developed. Additionally, a dynamic balance between CSF pressure in the spinal subarachnoid space and the spinal cord parenchyma may exist, and the anatomic conditions required to establish the presyrinx state may occur only rarely. For instance, the establishment of this state may depend on the morphology and extent of the network of spinal perivascular spaces and the capacity and patency of the central canal, among other factors. Intervention at an appropriate time may allow restoration of normal flow patterns and reversal of parenchymal signal abnormalities, as well as improvement in neurological deficits. That this entity may represent an equilibrium state is supported by the documentation of this appearance in one of our patients (Case 2) for some time before she progressed symptomatically to the point that surgical intervention was performed. Further study will be necessary to better understand normal and abnormal spinal subarachnoid fluid circulation and the pathophysiology of syrinx formation.

CONCLUSION

We have described a condition of reversible spinal cord enlargement and T₁ and T₂ prolongation, the “presyrinx” state, which occurs in the setting of CSF flow obstruction and may be misinterpreted as syringomyelia on MR studies. Surgical intervention aimed at restoring patency of CSF pathways is likely to be of benefit in these patients, and MR findings should guide selection of the procedure to be performed. This entity presumably represents a point on the continuum to development of syringomyelia and may be pathophysiologically related to variations in the patency of the central canal and also to the entity of progressive posttraumatic myelomalacic myelopathy.

References

N. J. Fischbein, et al.
“Presyrinx” state

Manuscript received November 15, 1999. Accepted in final form December 24, 1999.

An earlier version of this manuscript was published in the American Journal of Neuroradiology, Am J Neuroradiol 20:7–20, 1999.

Address reprint requests to: Nancy J. Fischbein, M.D., Department of Radiology, Box 0628, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, California 94143–0628. Email: Nancy.Fischbein@radiology.ucsf.edu.