Sacroiliac joint (SIJ) pain can mimic radicular or discogenic pain localized to the lower back, gluteal, or sacral regions, posing a challenge in diagnosis and treatment. In a large retrospective study by Bernard and Kirkaldy-Willis in 1987, low-back pain was reported in 22.5% of 1293 patients with SIJ dysfunction. Other authors have described similar findings, reporting a symptomatic SIJ dysfunction prevalence rate of 15% to 30% in patients presenting with low-back pain. Additionally, altered biomechanics of the lower back, secondary to osteoarthritis, inflammatory arthritis, or trauma, as well as spine fusion, causes overflowing of the SIJ leading to hypermobility or aberrant joint mechanics. Approximately 20% of women experience peripartum low-back pain, with the SIJ being the source of pain in 75%. A combination of hormonal, biomechanical, traumatic, and degenerative factors have been known to cause SIJ dysfunction in these postpartum states. Ha et al. reported that approximately 40% of lumbosacral fusions exhibited radiographic degeneration of the SIJ at 5 years. Management options for patients with SIJ pain have mainly focused on physical therapy and pain management methods involving medication, CT-guided SIJ injections, and sacral nerve radiofrequency ablation. For patients with chronic SIJ pain that is not amenable to conservative therapy, traditional open SIJ fusion is an option, although it is plagued with large incisions, autologous bone graft–related morbidity, long hospital stays, and postoperative non–weight-bearing, leading to an increase in patient morbidity. To overcome the morbidity associated with traditional open SIJ fusion surgery, minimally invasive surgery (MIS) approaches are being explored with percutaneous placement of implants, with good clinical results. Significant improvement in symptoms after MIS SIJ fusion in carefully selected patients with postpartum SIJ dysfunction has been reported. In addition, there has been a report of percutaneously placed, hollow, modular anchorage screws for SIJ fusion with significant improvement in clinical scores at the 24-month follow-up. The use of intraoperative fluoroscopy to aid implant placement is another technique being explored.
placement has been described extensively, including in SIJ fusion surgeries. However, stereotactic intraoperative image guidance with real-time navigated screw placement has been postulated to provide precise implant placement using MIS approaches. Darr et al. reported high satisfaction rates at 3 years following the use of triangular titanium implants inserted using a minimally invasive technique. Our study aims to describe a new technique using a robotic guidance navigation system (ExcelsiusGPS, Globus Medical) with synthetic bone graft inside hydroxyapatite (HA)–coated screws (SI-LOK, Globus Medical) for SIJ fusion and to document the clinical improvement as a secondary outcome after SIJ fusions using the visual analog scale (VAS) for pain.

Methods

Inclusion Criteria

A retrospective review of 36 consecutive patients who underwent SIJ fusion, with a total of 51 SIJs fused, using intraoperative 3D CT acquisition (O-arm system, Medtronic) and the ExcelsiusGPS robotic navigation platform (Globus Medical) was performed. The study included all patients older than 30 years who were diagnosed with SIJ dysfunction. All patients underwent comprehensive evaluation with a history of symptoms, clinical testing such as the thigh thrust, Gaenslen’s test, compression, and the sacral-thrust test for SIJ dysfunction, including CT-guided injections. Radiological evidence of SIJ dysfunction was also recorded. All other conditions causing similar symptoms were ruled out before confirming the diagnosis of SIJ dysfunction. Patients with a history of SIJ fractures, tumors, or infections were excluded from the study. Patient demographics (age, sex, and smoking status), preoperative VAS scores, unilateral or bilateral joint fusion, and previous anterior or posterior fixation were noted in all cases.

Indication for Surgery

All patients were initially treated with a conservative management protocol using physiotherapy, antiinflammatory medications, and SIJ pain block. Patients for whom 6 months of conservative management failed were offered surgical fusion. Follow-up was planned at 4 weeks, 3 months, 6 months, and 12 months. Erect radiographs were performed immediately, 3 months, and 1 year after surgery. A CT scan was obtained at the 6-month follow-up in patients who did not show clinical improvement at 3 months. VAS scores were collected at 12 months.

Informed consent was obtained from each patient participating in the study, and IRB approval was also obtained.

Surgical Technique

The patients were placed under general anesthesia and positioned prone on a Wilson frame. Sterile draping was done to expose both the buttocks and the lumbar spine. A 5-mm longitudinal stab incision was made over the posterior superior iliac spine for placement of the navigation reference frame to provide an imaging reference for the ExcelsiusGPS platform (Fig. 1). An intraoperative CT scan was obtained using the O-arm 2 system (Medtronic). Integration of the CT scan was performed with the ExcelsiusGPS. Using the navigation instruments, the entry points to accommodate 2 or 3 screws were marked on the skin after confirming the planned trajectory in axial, sagittal, and coronal images. A small, 1.5-cm incision was made over each marked skin incision and carried deep to the level of the bone (Fig. 2). Using a navigated cannula, a navigated drill was placed as perpendicular to the synovial SIJ as possible. A navigated high-speed drill was then passed,
keeping to the trajectory, using the navigation interface (Fig. 3). The most common pattern used 2 screws across the SIJ. The length and diameter of each implant were estimated based on navigated projections. The screws were placed using preplanned trajectories on the CT scan navigation interface of the robot. Convenient direct placement of screws was possible through the incision after drilling and tapping through the rigid robot guidance arm. Fixation was provided using cannulated screws (SI-LOK SIJ fixation system) filled with allograft and autograft bone from drilling. All incisions were closed in standard fashion. In the postoperative period, patients were allowed immediate weight-bearing and mobilization, as tolerated.

Results
A total of 36 patients underwent 51 SIJ fusions. The cohort comprised 22 females and 14 males with a mean age of 66 ± 14.3 years (range 33–88 years). All patients except one were non-active smokers. Twenty-two patients were diagnosed with primary SIJ dysfunction; 2 patients with primary SIJ dysfunction had undergone a trial with spinal stimulators, without any effect. Twelve patients had previous lumbosacral fusion and 2 patients had a floating lumbar fusion, with the fusion construct ending at L5 with a functional L5–S1 motion segment. The minimum follow-up was 12 months, with a mean follow-up of 13.3 months. Two patients had loosening of the screws and underwent revision surgery. Descriptive data are demonstrated in Table 1.

Functional Outcome
The Student t-test was used to compare the mean preoperative VAS SIJ pain score (7.2 ± 1.1, range 4–10), with the mean postoperative VAS SIJ pain score at the 12-month, final follow-up (1.6 ± 1.4), the difference of which was statistically significant (p < 0.05). Thirty-four patients reported significant improvement in pain scores at the final follow-up (Table 2).

Discussion
SIJ pathology can have variable presentations. Goldthwait and Osgood first reported that the SIJ can be a source of unexplained buttock, low-back, and leg pain. Such nonspecific presentation requires a thorough clinical assessment to correctly identify the pain generators. Often positive provocation maneuvers such as the FABER test, Gaenslen test, and thigh thrust, along with a marked reduction of symptoms on image-guided SIJ injection, can be considered reliable markers for diagnosing SIJ-related pain and excluding other pathologies.

Several fusion techniques have been described for SIJ arthrodesis, but debate continues regarding the best MIS method for SIJ fusion. Such open techniques, even modified with the use of modern fixation devices, are associated with increased blood loss, longer surgical time, and mixed results. In contrast, Rudolf studied a cohort of 50 patients who underwent percutaneous fusion using the iFuse Implant System (SI-BONE, Inc.), a triangular titanium implant system for SIJ arthritis; the author found favorable clinical outcomes, with 82% of patients reporting significant clinical improvements at all time points. Another study reported long-lasting clinical improvements using iFuse over a 5-year follow-up period. Similarly, studies by Khurana et al. and Mason et al. reported encouraging outcomes using hollow, modular anchorage screws for SIJ fusion by a minimally invasive approach. Minimally invasive techniques show promising early and midterm results.

MIS SIJ fusions are not without shortcomings. Zaidi et al. reviewed several studies including 299 MIS SIJ fusions

Table 1. Descriptive analysis of patients

<table>
<thead>
<tr>
<th>Value (n = 36)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age ± SD, yrs</td>
<td>66 ± 14.3</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>14 (38.9)</td>
</tr>
<tr>
<td>F</td>
<td>22 (61.1)</td>
</tr>
<tr>
<td>Fusion, n (%)</td>
<td></td>
</tr>
<tr>
<td>Unilat</td>
<td>21 (58.3)</td>
</tr>
<tr>
<td>Bilat</td>
<td>15 (41.7)</td>
</tr>
<tr>
<td>Total no. of SIJs fused</td>
<td>51</td>
</tr>
</tbody>
</table>

Table 2. Comparison of preoperative and postoperative VAS scores

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean preop VAS score ± SD</td>
</tr>
<tr>
<td>Mean postop VAS score ± SD at final follow-up</td>
</tr>
<tr>
<td>p value</td>
</tr>
</tbody>
</table>
sions with a mean follow-up of 21 months. They report-
ed radiographically confirmed fusion rates from 18% to 100%; however, this review noted that more than 80% of
studies did not include imaging-confirmed anatomical fu-
sions as part of the outcomes assessment. Duhon et al.21 re-
ported a bridging bone fusion across the SIJ in 87% of pa-
tients at the 12-month follow-up using a percutaneous SIJ
arthrodesis with triangular implants. Fusion rates for MIS
sacroiliac fusion from other studies with dedicated radi-
ographic imaging have been reported from 87% to 97%.21,22
Beck et al. reported a fusion rate of 96.9% in 20 patients
after using INFUSE bone graft consisting of rhBMP-2 in
conjunction with a single-threaded titanium cage (INTER
FIX, Medtronic), with a mean follow-up of 27 months.23
The current study reports a progressive fusion trend over 12
months of follow-up. We hypothesize that larger bone and
an HA coating with a slotted screw in the SI-LOK system,
along with bone graft, might allow rapid fusion across the
SIJ; this is based on our historical, yet unpublished, data.
A few studies have reviewed the complications of MIS
SIJ fusion. Reoperation rates of 0% to 17% have been re-
ported in the literature. 24 In our study, 2 of 36 (5.5%) pa-
tients underwent reoperation due to loosening of the S2
screw. In one of these patients, the SIJ was deemed fused
but an additional third screw was inserted to augment the
fusion across the SIJ, whereas in the other patient, fearing
nonunion across the joint, the loose screw was replaced
with a large-bore rescue screw at the surgeon’s discretion.
A recent study by Schoell et al.25 identified a complica-
tion rate of 16.4% in MIS SIJ fusions at the 6-month follow-
up; however, they did not include new lumbar pathology,
infection, and postoperative pain in their assessment. We
did not encounter any complication of infection or novel
lumbar pathology. Pain persisted in 2 patients who report-
ed VAS scores of 5 and 6, even at the 12-month follow-up;
for these patients, we believe that the persistence of pain
was due to multimodal pain generators and not specifi-
cally from SIJ dysfunction.

The MIS technique relies on stabilization of the joint
without direct fusion with decortication and has potential
for delayed loosening. There is no consensus regarding the
number of implants needed to achieve fusion across the
SIJ. In our experience, we have noticed that a two-screw
construct may be adequate in most cases, given the actual
data on SIJ fusion. A single implant may allow continued
micromotion across the joint leading to delayed fusion or
nonunion.26 On the contrary, a three-implant construct
provides complete stability compared with one or two im-
plants, and reduces the complications associated with two
implants, as shown by finite element analysis.27

This study reports a significant clinical improvement
and reduction in postoperative VAS scores over the course
of the follow-up. Final follow-up for clinical scores was
done at 12 months. The patient-reported mean postoper-
ative VAS score (1.6 ± 1.4) showed statistically significant
improvement (p < 0.05) compared with the mean preop-
erative VAS score (7.2 ± 1.1).

Conclusions

Our results have demonstrated that robot-assisted per-
cutaneous SIJ fusion using SI-LOK screws and synthetic
bone graft significantly improves pain in the treatment of
SIJ dysfunction with an acceptable complication profile
and reliable radiological fusion by 12 months. This may be
explained, in part, by minimal tissue trauma from the
surgical approach and precise placement of implants.

References

1. Sembrano JN, Polly DW Jr. How often is low back pain not
E27-E32.

2. Bernard TN Jr, Kirkaldy-Willis WH. Recognizing specific
characteristics of nonspecific low back pain. Clin Orthop

3. Schwarzer AC, Aprill CN, Bogduk N. The sacroiliac joint in

4. Al-Khayer A, Hegarty J, Hahn D, Grevitt MP. Percutaneous

5. Capobianco R, Cher D; SIFI Study Group. Safety and ef-
fecitiveness of minimally invasive sacroiliac joint fusion in
women with persistent post-partum posterior pelvic girdle
pain: 12-month outcomes from a prospective, multi-center

HJ. Sacroiliac joint pain after lumbar and lumbosacral fu-

7. Ha KY, Lee JS, Kim KW. Degeneration of sacroiliac joint
after instrumented lumbar or lumbosacral fusion: a prospec-
tive cohort study over five-year follow-up. Spine (Phila

8. Smith-Petersen MN. Arthrodesis of the sacroiliac joint. A new

9. Rudolf L. MIS fusion of the SI joint: does prior lumbar
spinal fusion affect patient outcomes? Open Orthop J. 2013;
7:163-168.

10. Durr E, Meyer SC, Whang PG, Kovalsky D, Frank C, Lock-
stadt H, et al. Long-term prospective outcomes after minimal-
ly invasive trans-sacroiliac sacroiliac joint fusion using triangular

11. Goldthwait JE, Osgood RB. A consideration of the pelvic
articulations from an anatomical, pathological and clinical

12. Bernard TN Jr, Cassidy JD. The sacroiliac joint syndrome:
pathophysioloogy, diagnosis, and management. In: Frymoyer

The value of medical history and physical examination in
21(22):2594-2602.

14. Schütt Z, Grob D. Poor outcome following bilateral sacro-
iliac joint fusion for degenerative sacroiliac joint syndrome.

15. Kim JT, Rudolf LM, Glaser JA. Outcome of percutane-
ous sacroiliac joint fixation with porous plasma-coated triangular
titanium implants: an independent review. Open Orthop J.
2013;7:51-56.

16. Rudolf L. Sacroiliac joint arthrodesis-MIS technique with ti-
nium implants: report of the first 50 patients and outcomes.

17. Rudolf L, Capobianco R. Five-year clinical and radiographic
outcomes after minimally invasive sacroiliac joint fusion

18. Khurana A, Guha AR, Mohanty K, Aluja S. Percutaneous
fusion of the sacroiliac joint with hollow modular anchorag

Chaves et al. Neurosurg Focus Volume 52 • January 2022 4

Disclosures
The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author Contributions
Conception and design: all authors. Acquisition of data: all authors. Analysis and interpretation of data: all authors. Drafting the article: all authors. Critically revising the article: all authors. Reviewed submitted version of manuscript: all authors. Approved the final version of the manuscript on behalf of all authors: Chaves. Statistical analysis: all authors. Administrative/technical/material support: all authors. Study supervision: Choi.

Correspondence
Jennyfer Paulla Galdino Chaves: Spine Ortho Clinic, Melbourne, Victoria, Australia. jennyfergaldino@hotmail.com.