Learning curves in robot-assisted spine surgery: a systematic review and proposal of application to residency curricula

Zach Pennington, MD, 1 Brendan F. Judy, MD, 2 Hesham M. Zakaria, MD, 3 Nikita Lakomkin, MD, 1 Anthony L. Mikula, MD, 1 Benjamin D. Elder, MD, PhD, 1 and Nicholas Theodore, MD 2

1Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota; 2Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and 3Department of Neurosurgery, California Pacific Medical Center, Sutter Health, San Francisco, California

OBJECTIVE Spine robots have seen increased utilization over the past half decade with the introduction of multiple new systems. Market research expects this expansion to continue over the next half decade at an annual rate of 20%. However, because of the novelty of these devices, there is limited literature on their learning curves and how they should be integrated into residency curricula. With the present review, the authors aimed to address these two points.

METHODS A systematic review of the published English-language literature on PubMed, Ovid, Scopus, and Web of Science was conducted to identify studies describing the learning curve in spine robotics. Included articles described clinical results in patients using one of the following endpoints: operative time, screw placement time, fluoroscopy usage, and instrumentation accuracy. Systems examined included the Mazor series, the ExcelsiusGPS, and the TiRobot. Learning curves were reported in a qualitative synthesis, given as the mean improvement in the endpoint per case performed or screw placed where possible. All studies were level IV case series with a high risk of reporting bias.

RESULTS Of 1579 unique articles, 97 underwent full-text review and 21 met the inclusion and exclusion criteria; 62 articles were excluded for not presenting primary data for one of the above-described endpoints. Of the 21 articles, 18 noted the presence of a learning curve in spine robots, which ranged from 3 to 30 cases or 15 to 62 screws. Only 12 articles performed regressions of one of the endpoints (most commonly operative time) as a function of screws placed or cases performed. Among these, increasing experience was associated with a 0.24- to 4.6-minute decrease in operative time per case performed. All but one series described the experience of attending surgeons, not residents.

CONCLUSIONS Most studies of learning curves with spine robots have found them to be present, with the most common threshold being 20 to 30 cases performed. Unfortunately, all available evidence is level IV data, limited to case series. Given the ability of residency to allow trainees to safely perform these cases under the supervision of experienced senior surgeons, it is argued that a curriculum should be developed for senior-level residents specializing in spine comprising a minimum of 30 performed cases.

https://thejns.org/doi/abs/10.3171/2021.10.FOCUS21496

KEYWORDS spine robot; learning curve; resident education; residency curricula
surgery, including several meta-analyses5,5 and one small randomized, unblinded prospective trial.6 The identified benefits have included increased instrumentation accuracy,5,7 reduced radiation dosage,7,8 reduced blood loss,9 and a shorter hospital length of stay.9 However, the heterogeneity of the published series makes it unclear as to whether the results of robot-assisted spine surgery are dependent on the experience level of the user. It is known from the orthopedic arthroplasty10 and general surgery literature11 that there exists a learning curve, a certain minimum number of cases that must be performed for the user to become proficient. Systematic reviews of the robotic laparoscopy and arthroplasty literature have suggested that the number to achieve baseline proficiency is 15 to 35 cases.10,11 To this end, many authors describing their experience with spine robots have similarly documented the presence of a learning curve.9,12–25 This is important, as the rates of complication may be higher early on in the learning curve and may actually make robotic surgery less safe than more conventional means as surgeons and trainees master these assistive devices.

Given the potential for robotic systems to be less efficient and less effective, at least early in the experience, there exists the question as to whether or not the teaching of robotic systems should be integrated within neurosurgery residency curricula. The objectives of the present review are to summarize the literature on learning curves in spine robotics and to propose a means by which the teaching of spinal robotics may be integrated within current residency curricula.

Methods

To identify the current evidence for learning curves in spine robotic surgery, a systematic review of the literature was performed on July 22, 2021. Databases queried were PubMed/MEDLINE, Ovid MEDLINE, Web of Science, and Scopus. The bibliographies of included articles were queried for additional relevant references. Search queries are listed in Table 1. Articles were included if they described primary data from a cohort, trial, or series examining spine surgical robots used to place pedicle screws or other spine instrumentation in patients. To be included, articles must have presented data on one of the following endpoints as a surrogate of improvement in proficiency with the device: pedicle screw accuracy (graded or rate of misplacement), pedicle screw placement time, robot registration time, fluoroscopy utilization (time or radiation delivered), or operative time. Studies using any of the commercially approved robots (ExcelsiusGPS, Mazor SpineAssist, Mazor Renaissance, Mazor X, Mazor X Stealth, TiRobot, ROSA ONE Spine, and Cirq) were included. Articles were excluded if they did not present primary data (i.e., were case reports, reviews, commentaries, letters to the editor, or methods descriptions), if they described the use of a non-spine robot (e.g., DaVinci, Intuitive Surgical), if they studied learning outside the clinical setting (e.g., in cadavers, polyurethane models, or animals), or if they studied robot skills learning in non-spine surgery.

Articles were screened independently by two reviewers for inclusion and exclusion criteria according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Fig. 1). In cases of disagreement, a third reviewer was recruited to resolve the disagreement. Data extraction was then performed by the two reviewers with additional review by the third, independent reviewer. As the primary endpoint of the study was the presence or absence of a learning curve (i.e., a difference in the examined outcomes as a function of screws placed or cases performed) and none of the series provided patient-level data, a pooled analysis was not possible. Consequently, only a qualitative analysis of the gathered data is presented. Gathered endpoints were summarized as ranges and the number of studies reporting each outcome. All included studies were classified as level IV therapeutic studies according to the North American Spine Society levels of evidence guidelines,26 and were at high risk of reporting bias.

Results

Our systematic review identified 1579 unique articles, of which 97 met criteria for full-text review. On full-text review, 76 articles were excluded, most commonly because they did not present learning curve data (n = 62) or did not present primary data (n = 7). This left 21 articles9,12–25,27–32 that met inclusion and exclusion criteria (Table 2). All were case series (level IV evidence) at high risk of reporting bias. Of the included articles, 2 described experiences with the Mazor SpineAssist19,27 and 8 with the Mazor Renaissance12,18,20–22,24,28,32 with the Mazor X, Mazor X Stealth14,16,25,29,31 and 2 with the TiRobot.33 Fourteen series described the experience of a single attending surgeon9,12,13,15–18,20,21,24,25,29,31,32 and 5 described the pooled experience of multiple attending surgeons.14,19,27,28,30 I described the experiences of supervised residents or spine fellows22 and 1 described the experiences of a single attending surgeon and two spine fellows.23

<table>
<thead>
<tr>
<th>Database</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>PubMed</td>
<td>(“robot” OR “robotics” OR “robot-assisted”) AND (“spine” OR “spinal” OR “vertebral” OR “vertebra” OR “vertebrae”) AND (“surgery” OR “surgical”)</td>
</tr>
<tr>
<td>Ovid</td>
<td>(“robot” or “robotics” or “robot-assisted”) and (“spine” or “spinal” or “vertebral” or “vertebra” or “vertebrae”) and (“surgery” or “surgical”).af.</td>
</tr>
<tr>
<td>Web of Science</td>
<td>(ALL=(“robot” OR “robotics” OR “robot-assisted”)) AND ALL=(“spine” OR “spinal” OR “vertebral” OR “vertebra” OR “vertebrae”) AND ALL=(“surgery” OR “surgical”)</td>
</tr>
<tr>
<td>Scopus</td>
<td>(TITLE-ABS-KEY(“robot” OR “robotics” OR “robot-assisted”)) AND TITLE-ABS-KEY(“spine” OR “spinal” OR “vertebral” OR “vertebra” OR “vertebrae”) AND TITLE-ABS-KEY(“surgery” OR “surgical”) AND LANGUAGE (English)</td>
</tr>
</tbody>
</table>

Af = all fields.
Series varied in size from 13 patients32 to 258 patients;19 only 9 series considered > 50 treated patients;12–16,19,23,27,28 with 2 having examined experience with the Mazor Spine-Assist;19,27 2 with the Mazor Renaissance;12,28 1 with the TiRobot;15 2 with the Mazor X;14,16 1 with the ExcelsiusGPS;23 and 1 with the Mazor X Stealth.13 For endpoints, 8 articles used pedicle screw accuracy as a measure of the learning curve;12,17,19,23,27,28,30,31 4 observed the presence of a learning curve, ranging from 10 to 30 cases or 30 screws, as in the analysis of Siddiqui et al.23 When considering total operative time, 8 of the 10 articles performed linear regressions of the examined endpoint as a function of the number of cases performed or screws placed;9,14,16,17,20,24,25,32 Two studies, those of Avrumova et al.13 and Chen et al.,15 performed logistic regressions. Avrumova et al.13 performed a regression for screw placement time as a function of screws placed in addition to a dichotomous analysis. In this analysis they found that the learning curve was relat-
<table>
<thead>
<tr>
<th>Authors & Year</th>
<th>System</th>
<th>Provider Level</th>
<th>Study Population</th>
<th>Outcome</th>
<th>Learning Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu & Lieberman, 2014<sup>12</sup></td>
<td>Mazor Renaissance</td>
<td>1 attending</td>
<td>150 pts underwent elective thoracolumbar fusion (12 robot failures; 19 MIS; 9 mixed open/MIS; 1699 screws)</td>
<td>Screw accuracy (scale not given)</td>
<td>→ screw placement accuracy from 1st 30 to subsequent cases (82 vs 93%; p < 0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stratified by quintiles</td>
<td>Rate of conversion to manual placement</td>
<td>↓ rate of conversion from robot to manual comparing 1st 30 cases w/ subsequent 120 (17 vs 5%; p < 0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean age 51 yrs; 29% M</td>
<td>Screw malposition</td>
<td>NS ↓ screw malposition rate (0.8 vs 0.7%; p = 0.72)</td>
</tr>
<tr>
<td>Onen et al., 2014<sup>19</sup></td>
<td>Mazor Renaissance</td>
<td>1 attending</td>
<td>27 pts underwent thoracolumbar fusion for fracture or degenerative disease (136 screws; 60% PPS)</td>
<td>Op time</td>
<td>Comparison of 1st 62 screws w/ next 74 showed ↓ op time (73.2 vs 46.1 min; p < 0.05), ↓ screw placement time (15.5 vs 8.6 sec; p < 0.05), & ↓ fluoro time (1.8 vs 0.9 sec; p < 0.05)</td>
</tr>
<tr>
<td>Schatlo et al., 2015<sup>19</sup></td>
<td>Mazor Spine-Assist</td>
<td>13 attendings</td>
<td>258 pts underwent thoracolumbar instrumentation (1265 screws)</td>
<td>Screw accuracy on GR scale</td>
<td>Improvement nonlinear; → misplacement from cases 11–15, peak btwn 16 & 20, then improvement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pt demographics not given</td>
<td></td>
<td>% total cases w/ screw misplacement ↓ w/ surgeons w/ >15 cases performed</td>
</tr>
<tr>
<td>van Dijk et al., 2015<sup>27</sup></td>
<td>Mazor Spine-Assist</td>
<td>2 attendings</td>
<td>112 pts underwent PPS lumbar fusion (494 screws)</td>
<td>Screw accuracy on GR scale</td>
<td>NS difference in screw accuracy (p > 0.13) or screw deviation (p > 0.15) when comparing 1st 30 placed screws w/ subsequent screws for each operator</td>
</tr>
<tr>
<td>Hyun et al., 2017<sup>20</sup></td>
<td>Mazor Renaissance</td>
<td>1 attending</td>
<td>30 pts underwent 1- or 2-level MIS fusion (130 screws)</td>
<td>Instrumentation time/screw</td>
<td>↓ time/screws for 2nd 15 vs 1st 15 (4.0 vs 5.5 mins; p = 0.23); curve: time (mins) = −0.0952 (case no.) + 6.1845 (r² = 0.20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean age 67 yrs; 30% M</td>
<td>Fluoro/screw</td>
<td>NS ↓ fluoro/screw in 2nd 15 vs 1st 15 cases (2.9 ± 1.0 vs 4.1 ± 2.4 sec; p = 0.12); curve: time (sec) = −0.0954 (case no.) + 4.9929 (r² = 0.18)</td>
</tr>
<tr>
<td>Kim et al., 2017<sup>21</sup></td>
<td>Mazor Renaissance</td>
<td>1 attending</td>
<td>37 pts underwent 1- to 2-level PLIF for lumbar stenosis (158 screws)</td>
<td>Screw accuracy on GR scale</td>
<td>1st 8 vs subsequent 29 cases showed ↓ fluoro time in platform attachment (7.75 ± 3.86 vs 2.9 ± 1.44 sec; p < 0.001), ↓ pedicle screw insertion time (14.86 ± 5.3 vs 9.03 ± 3.85 sec; p < 0.001) & total fluoro time (27.5 ± 4.87 vs 18.45 ± 3.90 sec; p < 0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean age 65 ± 10 yrs; 50% M</td>
<td>Fluoro time/step: platform attachment, marker radiograph acquisition, & pedicle screw insertion</td>
<td>↓ fluoro time came from ↓ fluoro time for robot platform attachment & screw placement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↓ total fluoro time decreased mildly btwn cases 1 & 9; stable thereafter</td>
</tr>
<tr>
<td>Urakov et al., 2017<sup>22</sup></td>
<td>Mazor Renaissance</td>
<td>Junior residents (PGY1–5), senior residents (PGY6 & 7), fellows (PGY8)</td>
<td>30 pts underwent short-segment fusion of thoracolumbar spine: T4–pelvis (306 screws; 6 cases MIS)</td>
<td>Pedicle screw insertion time</td>
<td>↓ insertion time/screw w/ increasing case no. (no statistics); 1–3 cases vs 4–7 cases (4.6 vs 3.6; p = 0.057)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean age 69 yrs; 50% M</td>
<td></td>
<td>NS ↓ insertion time for “spine-dedicated” vs “not dedicated” residents (4.5 vs 3.84 min/screw)</td>
</tr>
<tr>
<td>Kam et al., 2019<sup>23</sup></td>
<td>Mazor Renaissance</td>
<td>3 attendings</td>
<td>73 pts underwent PPS instrumentation (352 screws)</td>
<td>Screw accuracy on GR scale</td>
<td>Plot of screw time vs case no. flat (r² = 2.6 × 10⁻¹)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean age 67 ± 11 yrs; 37% M</td>
<td>Screw placement time</td>
<td>No difference in median screw placement time (p = 0.61) or screw accuracy (p = 0.31) w/ increased experience</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fluoro time/screw</td>
<td>No trend in mean fluoro time/screw across cases</td>
</tr>
</tbody>
</table>

CONTINUED ON PAGE 5 »
TABLE 2. Summary of studies examining learning curves for spinal robotic systems

<table>
<thead>
<tr>
<th>Authors & Year</th>
<th>System</th>
<th>Provider Level</th>
<th>Study Population</th>
<th>Outcome</th>
<th>Learning Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khan et al., 201929</td>
<td>Mazor X</td>
<td>1 attending</td>
<td>• 20 pts underwent 1-level lumbar fusion (75 screws)</td>
<td>• Screw placement time</td>
<td>Comparing 1st 10 w/ 2nd 10 cases showed no significant differences, though fluoro time (15.8 ± 21.8 vs 10.5 ± 4.8 sec) & radiation dose (35.6 ± 44.4 vs 24.2 ± 14.1 mGy) were lower</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mean age 60 ± 8 yrs; 35% M</td>
<td>• Fluoro time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fluoro radiation dose</td>
<td></td>
</tr>
<tr>
<td>Siddiqui et al., 201923</td>
<td>Excelsius-</td>
<td>1 attending, 2</td>
<td>• 120 pts underwent thoracolumbar fusion (95% lumbar), mostly for degenerative disease & adjacent-segment disease (665 screws)</td>
<td>• Screw tip deviation, tail deviation, & angular deviation from plotted trajectory</td>
<td>Attending & 1 fellow showed ↑ screw tip accuracy after 30 screws placed (p = 0.01 & p = 0.002, respectively)</td>
</tr>
<tr>
<td></td>
<td>GPS</td>
<td>fellows</td>
<td></td>
<td>• Fluoro time</td>
<td>All surgeons showed ↑ screw tail accuracy after 30 screws placed</td>
</tr>
<tr>
<td>Bäcker et al., 202024</td>
<td>Mazor</td>
<td>1 attending</td>
<td>• 46 pts underwent multilevel lumbar fusion for degenerative disease (281 screws); 16 cases excluded because of robot system setup failure</td>
<td>• Op time</td>
<td>NS ↓ robot usage time (slope = −0.69 mins/op (r² = 0.07; p = 0.094), but 2 extreme outliers present</td>
</tr>
<tr>
<td></td>
<td>Renaissance</td>
<td></td>
<td>• Mean age 63 ± 13 yrs; 33% M</td>
<td>• Robot usage time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Pedicle screw insertion time</td>
<td>↓ op time (−3.64 mins/case; r² = 0.22; p < 0.005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fluoro time</td>
<td>NS ↓ pedicle screw insertion time (−0.05 mins/screw; r² = 0.02; p = 0.37)</td>
</tr>
<tr>
<td>Fayed et al., 202030</td>
<td>Excelsius-</td>
<td>2 attendings</td>
<td>• 20 pts underwent PPS placement for lumbar interbody fusion (103 screws)</td>
<td>• Screw accuracy on GR scale</td>
<td>Minor trend toward ↓ screw breach rate in 2nd half vs 1st half of screws (p = 0.151)</td>
</tr>
<tr>
<td></td>
<td>GPS</td>
<td></td>
<td>• Mean age 63 ± 8 yrs; 30% M</td>
<td>• Op time</td>
<td></td>
</tr>
<tr>
<td>Jiang et al., 20209</td>
<td>Excelsius-</td>
<td>1 attending</td>
<td>• 28 pts underwent 1- to 2-level lumbar fusion for degenerative disease (113 screws; 23 open cases)</td>
<td>• Screw accuracy on GR scale</td>
<td>Significant ↓ op time over 1st 30 cases; curve: time (mins) = −4.6 (case no.) + 275.5; r² = −0.26 (p = 0.017)</td>
</tr>
<tr>
<td></td>
<td>GPS</td>
<td></td>
<td>• Mean age 62 ± 15 yrs; 50% M</td>
<td>• Op time</td>
<td>Greatest ↓ in op time occurred in 1st 10 cases</td>
</tr>
<tr>
<td>Khan et al., 202031</td>
<td>Mazor X</td>
<td>1 attending</td>
<td>• 22 pts underwent 1- to 2-level PLIF degenerative disease (92 screws)</td>
<td>• Screw accuracy on Ravi scale</td>
<td>Cases 1–11 associated w/ ↑ fluoro time vs cases 12–22 but difference NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mean age 65 ± 10 yrs; 27% M</td>
<td>• Op time</td>
<td>No difference in op time, radiation dose, or screw accuracy b/w groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fluoro time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Radiation dose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Screw accuracy</td>
<td></td>
</tr>
<tr>
<td>Mao et al., 202025</td>
<td>Mazor X</td>
<td>1 attending</td>
<td>• 39 pts underwent 1–4+ level thoracolumbar instrumentation for multiple indications (318 screws)</td>
<td>• Op time/level</td>
<td>↓ op time w/ increasing experience noted; curve time (min) = −2.1901 (case no.) + 130.42; r² = 0.0911</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mean age 60 ± 12 yrs; 36% M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avrumova et al., 202113</td>
<td>Mazor X</td>
<td>1 attending</td>
<td>• 65 pts underwent PLIF (311 screws; 53 converted to freehand)</td>
<td>• Screw instrumentation time</td>
<td>Screw time learning curve: time (min) = −1.064 ln (screw no.) + 8.5814; r² = 0.1458; curve flat beyond screw 50</td>
</tr>
<tr>
<td></td>
<td>Stealth</td>
<td></td>
<td>• Mean age 60 ± 13 yrs</td>
<td>• Op time</td>
<td>Significant ↓ op time from cases 1 to 2; relatively flat after case 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Registration time</td>
<td>↓ registration time 1st 10 vs last 10 cases (9.1 ± 2.0 vs 6.1 ± 2.5 min; p = 0.006)</td>
</tr>
</tbody>
</table>

CONTINUED ON PAGE 6 »
tively flat beyond 50 screws placed. Chen et al.,15 however, performed a regression of operative time and robot usage time as a function of case number and reported a relative plateau after approximately 20 cases.

Discussion

In the present systematic review, 21 articles were identified that investigated the presence of a learning curve in spinal robotics, of which 18 provided evidence for the existence of a learning curve, ranging from 3 to 30 cases or 15 to 62 screws, depending on the endpoint examined.9,12–25,28,31,32 Importantly, of those series with the greatest experiences described—5 series in which the surgeon had used the robot in ≥ 50 cases12,13,15,16,19—80% documented the presence of a statistically significant learning curve. Improvements were most commonly noted in total operative time, screw accuracy, and screw placement time. Of the 3 articles failing to document a learning curve,27,30,32 2 described very small experiences of 13 and 20 cases.30,32

Given that a significant plurality of the series documented a learning curve of 20 to 30 cases to achieve proficiency, it is likely that these series were too small to determine the presence or absence of a learning curve. Similarly, the third article tested for the presence of a learning curve using a threshold of 30 screws,27 which is far below the number of screws that would be placed in 20 single-level fusions. Consequently, the data would argue for the presence of a learning curve given that a sufficient number of cases are examined.

Despite the evidence gathered supporting the existence of a learning curve in spinal robotics, the body of evidence is of low quality, comprising single-surgeon series. A pooled analysis of prior experiences would help to generate high-level evidence and enable more powerful conclusions to be drawn. Additionally, such a pooled analysis would help to control for baseline surgeon experience, as greater familiarity with spine surgery, in general, would be

TABLE 2. Summary of studies examining learning curves for spinal robotic systems

<table>
<thead>
<tr>
<th>Authors & Year</th>
<th>System</th>
<th>Provider Level</th>
<th>Study Population</th>
<th>Outcome</th>
<th>Learning Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bydon et al., 202114</td>
<td>Mazor X</td>
<td>Multiple attendings</td>
<td>• 77 pts treated for degenerative disease; 53 MIS TLIF, 18 PLIF (6 MIS), 6 PPS fusion (402 screws)</td>
<td>• Op time</td>
<td>↓ op time (R = −0.39; p < 0.001); 6-min reduction/mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mean age 56 ± 12 yrs; 51% M</td>
<td>• Fluoro time/ screw</td>
<td>NS ↓ fluoro time (R = −0.16; p = 0.38)</td>
</tr>
<tr>
<td>Chen et al., 202115</td>
<td>TiRobot</td>
<td>1 attending</td>
<td>• 52 pts underwent 1-level MIS TLIF (208 screws)</td>
<td>• Screw accuracy on GR scale</td>
<td>Relative plateau after ~20 cases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mean age 58 ± 13 yrs; 62% M</td>
<td>• Op time</td>
<td>Fit for op time: time = −9.427 ln (case no.) + 198.02; r² = 0.096</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Robot usage time</td>
<td>Fit for robot usage time: time = −10.576 ln (case no.) + 67.167; r² = 0.469</td>
</tr>
<tr>
<td>Lee et al., 202116</td>
<td>Mazor X</td>
<td>1 attending</td>
<td>• 51 pts underwent 1- to 2-level lumbar fusion for degenerative disease (240 screws)</td>
<td>• Op time</td>
<td>↓ op time (40 mins) after 1st 20 cases (193 ± 30 vs 153 ± 55 min; p = 0.019)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mean age 55 ± 13 yrs; 47% M</td>
<td>• LOS</td>
<td>Curve op time = −2.2 mins (case no.) + 214; r² = 0.192</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↓ LOS (3.1 ± 2.1 vs 2.2 ± 0.5 days) after case 20</td>
</tr>
<tr>
<td>Morse et al., 202117</td>
<td>Mazor X</td>
<td>1 attending</td>
<td>• 19 pts underwent pediatric scoliosis surgery (194 screws planned; 168 placed)</td>
<td>• Pedicle screw insertion time</td>
<td>↓ screw insertion time w/ ↑ screw no. (r = −0.34; p < 0.001) & ↑ case no. (r = −0.344; p < 0.001)</td>
</tr>
<tr>
<td></td>
<td>Stealth</td>
<td></td>
<td>• Mean age 15 yrs; 21% M</td>
<td>• System registration time</td>
<td>↓ insertion time 2nd half vs 1st half of cohort (4.2 ± 2.9 vs 3.1 ± 1.8 mins; p = 0.003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Screw accuracy (breaches, abandoned screws)</td>
<td>Greatest ↓ in insertion time from case 1 to subsequent cases (11 vs <5 mins for all other cases)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Minor NS ↓ system registration time w/ ↑ case no.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• ↑ breaches (4.3% vs 14.7%) in 2nd vs 1st half of cases</td>
</tr>
<tr>
<td>Wang et al., 202132</td>
<td>Mazor Renaissance</td>
<td>1 attending</td>
<td>• 13 pts underwent MIS TLIF (15 interbodies placed)</td>
<td>• Op time</td>
<td>Using fluoro-guided MIS TLIF as baseline, no trend in op time for robot-assisted cases: time (mins) = 0.24 (case no.) + 40.56 (r² = 0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mean age 68.5 yrs; 31% M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fluoro = fluoroscopy; GR = Gertzbein-Robbins; ln = natural log; LOS = length of stay; MIS = minimally invasive surgery; NS = not significant; PLIF = posterior lumbar interbody fusion; PPS = percutaneous pedicle screw; pts = patients; TLIF = transforaminal lumbar interbody fusion; ↑ = increase in; ↓ decrease in. Mean values are often presented as mean ± SD.
expected to serve as a sounder knowledge base onto which the intricacies of robotic surgery could be overlaid. Only 2 of the identified studies examined surgeon experience or level of training as a factor in the learning curve for robotic systems.22,23 Urakov et al.22 saw no difference in the time of screw insertion for junior residents (postgraduate years [PGYs] 1–5) compared with senior residents (PGYs 6–7) or fellows using the Mazor Renaissance. However, the number of cases performed by each resident was quite small, and the interaction of learning curve with level of training was not reported. Similarly, Siddiqui et al.23 suggested that there was minimal interaction between level of training and learning curve in a three-surgeon series composed of a single attending and two postgraduate neurosurgical spine fellows using the ExcelsiusGPS. All three surgeons experienced significant improvement in screw tail placement accuracy over the first 30 screws placed. Only one of the fellows failed to show improvement in screw tip placement; however, their baseline performance was already superior to that of the attending and other fellow. The reason for this is unclear; however, it may be that all three surgeons had the minimum knowledge base required to take advantage of the robot, whereas a more junior resident might not.

Influence of Surgical Robots on Residency Curricula

Although novel for the field of neurosurgery, the issue of whether and how best to integrate surgical robotics within residency curricula is not unique. A similar issue was faced by the general surgery, obstetrics/gynecology, and urology fields in the past decade as they were forced to determine how best to integrate the increased utilization of surgical robots across their surgical disciplines.33,34 From a top-down perspective, all three fields have elected to consider robot-assisted procedures differently. Both obstetrics/gynecology and general surgery treat robot-assisted cases as a subtype of laparoscopic surgery, which had already been integrated into the case minimums outlined by the Accreditation Council for Graduate Medical Education (ACGME), the accrediting body for US residency programs.35,36 By contrast, effective as of 2021, ACGME mandates that graduating urology residents complete a minimum of 80 robot-assisted cases.37 The latter move has been suggested to, at least in part, been driven by the increasing volume of robot-assisted urological procedures, which comprised nearly half of all major urological surgeries during the 2016 to 2017 year.38 Consequently, reworking case minimums to better equip residents for the reality of clinical practice was a consideration to improve job prospects.

Penetration of surgical robotics within general surgery and obstetrics/gynecology is far lower, however, accounting for only 29% of uterine procedures and 8% of colorectal procedures between 2001 and 2015 (compared with 77% of prostate procedures).39 Additionally, many general surgery40 and obstetrics/gynecology41 programs do not regularly expose trainees to robotic cases. Consequently, imposing case log minimums for these procedures would place an unreasonable burden on trainees. Additionally, it has been noted that increased use of surgical robots is associated with decreased trainee participation in surgical cases and decreased surgical volume in other tracked categories.42

Application of Spinal Robotics to Neurosurgery Residency Curricula

Unlike robotics in general surgery, urology, and obstetrics/gynecology, spine surgery robots are relatively new. Therefore, few programs have these devices available, thereby precluding their inclusion in ACGME case minimums. Additionally, their indications are relatively limited, as their main purpose is to facilitate the accurate placement of pedicle screw instrumentation. As a result, the proportion of neurosurgical cases in which such a device could be used comprises the minority of cases that will be seen by or require logging by neurosurgical residents. Nevertheless, formalization of a spine robot curriculum for residents pursuing specialization in spine surgery can help to ensure these residents experience their robot learning curves during residency, and, thereby, shift the poorer outcomes from the time during which they are practicing independently to one in which they are supervised by a senior surgeon adept at the use of the robot. Additionally, acquisition of these skills may increase the marketability of residency graduates, as the majority of the public perceives surgical robots to be associated with better results and fewer complications, irrespective of the available data.43,44

Based on the evidence identified in the literature review here, we propose a curriculum in which senior-level residents (≥ PGY5) can obtain a certificate verifying competence with spine surgery robots. Under this curriculum, residents must perform a minimum of 30 surgical cases with one of the currently approved and marketed spine robots for which learning curves have been previously described (i.e., Mazor X, Mazor X Stealth, and ExcelsiusGPS). In addition, these residents should also complete any industry-sponsored training programs that are offered to surgeons who will be using these technologies, as these may highlight unique features of the varied systems, some of which may not be present at the residents’ home institutions. To participate, residents should have met their ACGME-mandated minimums for spine cases (300 in the latest ACGME guidelines).45 Having met these minimums helps to ensure that residents have acquired the basic anatomical knowledge necessary to verify the fidelity of robotic trajectories. It also helps to ensure that residents can troubleshoot cases in which the robot fails to register patient anatomy (up to 8% of cases)2 or otherwise forces screws to be placed manually after registration (up to 9% in one large series).42 The ability of surgeons to fall back on more conventional placement techniques (image guided, freehand, or fluoroscopy guided) is essential and ensures that robots are only used as tools to facilitate superior outcomes for spine surgeons as opposed to being employed by those who are incapable of performing the primary procedure without assistive technology.46

In truth, no curriculum can ensure that surgeons are competent with robotics or any procedure for that matter, but akin to residency training in general, it can improve the probability that users are competent with the device. An alternative to the aforementioned structure would require a minimum number of screws (vs cases) be placed to achieve certification. However, some of the articles identified in this review, such as that of Chen et al.,13 found

Neurosurg Focus Volume 52 • January 2022 7

Unauthenticated | Downloaded 05/18/22 01:31 PM UTC
that the major driver of decreased operative time was a
decrease in overall robot usage time (vs screw instrumen-
tation time alone). Consequently, the learning curve (and,
therefore, assessment of a trainee’s progression along said
curve) should be determined by both the number of screws
placed and the number of times the trainee has gone
through the workflow of setting up the robot and plot-
ting screw trajectories. Accomplishing both occurs at the
case level; therefore, it is argued that ensuring a minimum
number of robotic cases performed helps to better ensure a
minimum level of competency.

Limitations
The present review has several limitations, foremost
of which is the low level of evidence. All included stud-
ies were level IV case series, the majority of which were
single-surgeon series. Ideally, individual, patient-level data
could be included in a future analysis to reach more gen-
eralizable results, as well as to investigate the relative in-
fluence of user training level and robotic platform on the
learning curve. Additionally, the source data are all ret-
rospective, and many series are nonconsecutive, meaning
that included cases could have been selected for robot as-
sistance preoperatively based on surgeon-identified factors
that would facilitate a better outcome. It is impossible to
know the degree to which this affected the present results,
and future studies that prospectively investigate and docu-
ment surgeon results with surgical robots are required.
Furthermore, the evidence in the present review is drawn
from both current general robots (ExcelsiusGPS, Mazor X
Stealth, Mazor X, and TiRobot) and prior versions (Mazor
SpineAssist and Mazor Renaissance). The latter employed
more fragile platforms and less-refined imaging software
to plot screw trajectories. Consequently, they may have
been associated with longer learning curves as surgeons
adjusted to their varying results.

Another limitation of the present review is that a di-
verse set of endpoints are reported to describe the learning
curves associated with spine robot use. This may help to
account for the variability in the identified minimum num-
ber of cases required to achieve proficiency. However, it
must be noted that few studies assessed a total robot usage
time, with most looking at screw placement time, screw
accuracy, or screw fluoroscopy time. It has previously
been noted that robot system registration time represents
a nontrivial time cost associated with spine robot system
utilization. Time expended with robot system positioning
in the operating room, reference frame placement and reg-
istration, and reregistration of the system in the case of
long-segment constructs represent a greater proportion of
the total case time than does actual screw placement. Con-
sequently, the learning curve associated with robot system
usage may prove to be different when focusing on these
steps. Further investigation of robotic learning curves that
examines both changes in screw placement time and sys-
tem setup and registration times is necessary to better ap-
preciate the true learning curve of these devices.

Lastly, the proposed development of a certificate pro-
gram for residency curricula is contingent upon residency
programs having a sufficient robotic case volume. As no
good data yet exist for the percentage of spine surgeries
being performed robotically, or the percentage of train-
ing centers actively using robots for their spine cases, it
is unclear that such a certificate program is feasible at this
time. Nevertheless, given the increasing spine robot case
volumes reported by market research,2,3 and the propensity
for these advanced technologies to be found at large aca-
demic centers with sufficient financial infrastructure and
case volume to support their use, it seems likely that in
the near future a sufficient number of training programs
will see volume sufficient enough to render the proposed
certificate program feasible. Consequently, we advocate
for earlier discussion of such curriculum changes in an-
ticipation that they will be needed in the near future. Such
discussions will also broach topics of import, such as
whether a generalized curriculum is sufficient, or whether
platform-specific curricula will be necessary. This deci-
sion will likely benefit from better data on the learning
curves associated with spine robot workflow steps other
than screw placement.

Conclusions
In the present systematic review, we found that the ma-
jority of published series demonstrate the presence of a
learning curve in spinal robotics. Descriptions of the length
of the curve and the metrics used to define the curve are
highly heterogeneous. However, multiple studies have de-
scribed that surgeons experienced continued improvement
in outcomes up to a nadir of 20 to 30 cases, which coincides
with our previously described experience. Based on this,
we propose that an optional robotic spine surgery certifi-
cate program could be developed for senior-level residents
pursuing spine specialization who have already completed
the ACGME minimum requirements for spine surgery cas-
es. However, additional investigation in prospective series
using standardized outcomes (i.e., screw placement time,
oporative time, and instrumentation placement accuracy)
on currently employed systems is required to account for
potential reporting bias present in the extant series.

References
1. Childers CP, Maggard-Gibbons M. Estimation of the acquisi-
tion and operating costs for robotic surgery. JAMA. 2018;
320(8):835-836.
2. Updates 360 Market. Global Surgical Robots for the Spine
https://www.360marketupdates.com
3. Chen AF, Kazarian GS, Jessop GW, Makhdom A. Robotic
4. Perdomo-Pantoja A, Ishida W, Zygoourakis C, Holmes C,
Iyer RR, Cottrill E, et al. Accuracy of current techniques for
placement of pedicle screws in the spine: a comprehensive
systematic review and meta-analysis of 51,161 screws. World
Neurosurg. 2019;126:664-678.e3.
5. Zhou LP, Zhang RJ, Sun YW, Zhang L, Shen CL. Accuracy
of pedicle screw placement and four other clinical outcomes
of robotic guidance technique versus computer-assisted
navigation in thoracolumbar surgery: a meta-analysis. World
Neurosurg. 2021;146:e139-e150.
6. Roser F, Tatagiba M, Maier G. Spinal robotics: current appli-
cations and future perspectives. Neurosurgery. 2013;72(suppl

Disclosures

Dr. Theodore is the inventor of a device (ExcelsiusGPS) manufactured by Globus Medical Inc., which was used in the study discussed in this publication. He is entitled to royalty payments on future sales of the device and is a paid consultant for and direct stock owner in Globus Medical Inc. He also receives royalties from DePuy Synthes. Dr. Elder is a direct stock owner in Injectsense; consultant for Johnson & Johnson; and received research support for the study described from Stryker and SI Bone.

Most devices mentioned in this article—Mazor SpineAssist, Mazor Renaissance, Mazor X, Mazor X Stealth, and Globus ExcelsiusGPS—have been FDA approved for use in the placement of thoracolumbar spine instrumentation and are discussed only for approved indications. One device, the Tinavi TiRobot, is not currently FDA approved, but is approved for use in China and has been previously described in the peer-reviewed literature.

Author Contributions

Conception and design: Pennington, Zakaria. Acquisition of data: Pennington, Lakomkin, Mikula. Analysis and interpretation of data: Pennington, Judy, Zakaria, Lakomkin, Mikula. Drafting the article: Pennington. Critically revising the article: all authors. Reviewed submitted version of manuscript: all authors. Approved the final version of the manuscript on behalf of all authors: Pennington.

Correspondence

Zach Pennington: Mayo Clinic, Rochester, MN. pennington.zachary@mayo.edu.