Back pain outcomes after minimally invasive anterior lumbar interbody fusion: a systematic review

Alvin Y. Chan, MD,1 Brian V. Lien, MS,1 Elliot H. Choi, MS,1 Andrew K. Chan, MD,2 George Hanna, MD,1 Alexander M. Lopez, MD, MS,1 Nolan J. Brown, BS,1 Sandra Gattas, BS,1 Lydia Kirillova, BS,1 David Horton, BS,1 Gianna Fote, BS,1 Brian Hanst, MS,1 Ryan Perry, DO,3 Yu-Po Lee, MD,3 Kiarash Golshani, MD,1 Frank P. K. Hsu, MD, PhD,1 and Michael Y. Oh, MD1

Departments of 1Neurological Surgery and 3Orthopedic Surgery, University of California, Irvine; and 2Department of Neurological Surgery, University of California, San Francisco, California

OBJECTIVE Minimally invasive anterior lumbar interbody fusion surgery (MIS ALIF) is a technique that restores disc height and lumbar lordosis through a smaller exposure and less soft-tissue trauma compared to open approaches. The mini-open and laparoscopic assistance techniques are two main forms of MIS ALIF. The authors conducted a systematic review that sought to critically summarize the literature on back pain following MIS ALIF.

METHODS In March 2020, the authors searched the PubMed, Web of Science, and Cochrane Library databases for studies describing back pain visual analog scale (VAS) outcomes after MIS ALIF. The following exclusion criteria were applied to studies evaluated in full text: 1) the study included fewer than 20 patients, 2) the mean follow-up duration was shorter than 12 months, 3) the study did not report back pain VAS score as an outcome measure, and 4) MIS ALIF was not studied specifically. The methodology for the included studies were evaluated for potential biases and assigned a level of evidence.

RESULTS There were a total of 552 patients included from 13 studies. The most common biases were selection and interviewer bias. The majority of studies were retrospective. The mean sample size was 42.3 patients. The mean follow-up duration was approximately 41.8 months. The mean postoperative VAS reduction was 5.1 points. The mean VAS reduction for standalone grafts was 5.9 points, and 5.0 points for those augmented with posterior fixation. The most common complications included bladder or urinary dysfunction, infection, and hardware-related complications.

CONCLUSIONS This was a systematic review of back pain outcomes following MIS ALIF. Back pain VAS score was reduced postoperatively across all studies. The complication rates were low overall. MIS ALIF is safe and effective at reducing back pain in appropriate patient populations.

https://thejns.org/doi/abs/10.3171/2020.6.FOCUS20385

KEYWORDS laparoscopic; mini-open; visual analog scale; anterior lumbar interbody fusion; minimally invasive surgery

Anterior lumbar interbody fusion (ALIF) is effective for managing degenerative or traumatic instability by fusing the spine via an anterior approach. ALIF allows restoration of both anterior disc height and lumbar lordosis, especially compared to other approaches.1,2 A retrospective study of 57 total patients comparing ALIF and transforminal lumbar interbody fusion concluded that ALIF was superior for restoring foraminal height, the disc angle, and physiological lumbar lordosis.3 ALIF eliminates the need to dissect paraspinal muscles from the vertebrae associated with lateral approaches, thus decreasing the trauma and maintaining the vascular supply to these muscles.4 Multilevel ALIF is likely also better for deformity correction and restoration of lumbar lordosis than larger posterior-based osteotomies.5 There are complications associated with opening the abdomen during ALIF, which include vascular injury, sexual dysfunction, pancreatitis, bowel injury, and ileus.6 Therefore, minimizing exposure is preferred to limit complications.

Minimally invasive spine surgery (MISS) has become an attractive alternative to open approaches, allowing for decreased infection rates and shorter recovery periods.7 MISS has reduced soft-tissue damage compared to open surgery,8 and with reliance on fluoroscopy or laparosco-
py allows adequate visibility through smaller exposures.⁷ ALIF can be performed minimally invasively, and studies describing the mini-open, video-assisted, or image-guided ALIF have shown favorable outcomes.⁹–¹¹ A study of 98 patients who underwent ALIF via either a mini-open exposure or laparoscopy concluded that one technique did not have a definitive benefit over the other.¹² Furthermore, a prospective study of 54 patients that compared laparoscopic minimally invasive surgery (MIS) with an open approach showed there was no difference in outcomes or fusion rates.¹³ Despite this, there have been no systematic reviews conducted on MIS ALIF. To address this gap, we performed a review of available demographic, clinical information, and pre- and postoperative measures with attention to back pain using the visual analog scale (VAS). Our study aimed to provide a concise representation of the current literature of MIS ALIF while identifying advantages and limitations.

Methods

Literature Search

In March 2020 we searched the PubMed, Web of Science, and Cochrane databases for articles containing clinical VAS outcomes after MIS ALIF that were published in the last 20 years. We used the following search terms (“minimally invasive” or “MIS” or “mini-open” or “mini-open” or “laparoscopic” or “mini-ALIF” or “mini ALIF”) AND (“anterior lumbar interbody fusion” OR “anterior lumbar fusion” OR “mini-ALIF” or “mini ALIF”) AND (“anterior lumbar interbody fusion” OR “anterior lumbar fusion” OR “anterior lumbar surgery” OR “ALIF”). Two authors (A.Y.C. and B.V.L.) independently reviewed the articles. Discrepancies were resolved by discussion and consensus. Data extraction was performed by B.V.L. and reassessed by A.Y.C. and E.H.C.

Study Criteria and Data Collection

The search returned 154 results from PubMed, 187 from Web of Science, and 7 from the Cochrane Library, totaling 227 unique citations after exclusion of duplicates. The following inclusion criteria were applied: 1) primary clinical study reporting VAS outcomes after MIS ALIF, 2) English language only; and 3) publication date within the last two decades. If the study in the title and abstract did not specify minimally invasive, the full text was reviewed (Fig. 1).

Overall, 93 potential studies met our inclusion criteria and were reviewed in full text. The following exclusion criteria were applied: 1) data from fewer than 20 patients, 2) the mean follow-up duration for the study was less than 12 months, 3) back pain VAS score was not included as an outcome measure, and 4) the article not investigating MIS ALIF specifically. ALIF included antepsoas approaches, and strictly lateral surgeries were excluded. Ultimately, 13 studies met the inclusion and exclusion criteria. This literature review was designed and performed using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.¹⁴ Data from each study were collected for back pain VAS score, complications, and whether the patient had a standalone interbody fixation, as well as an additional posterior fixation.

We assessed the study methodology for each of the 13 selected studies for potential biases and assigned a level of evidence as previously described.¹⁴ Briefly, interviewer bias was defined as a systematic difference between how information was solicited, recorded, or interpreted (e.g., no
blinding). Recall bias was defined as bias due to outcomes of treatment affecting the patient’s memory for previous events. Selection bias was defined as bias due to patient loss to follow-up or if the exposure and outcome occurred before patient selection. Response bias was defined as bias occurring with self-report and surveys.

Results

The initial search resulted in 348 articles. After the screening and assessment of full-text articles, 13 studies fulfilled the inclusion criteria. There were 552 patients included from these studies (Table 1). The level of evidence ranged from II to IV. The most common biases included selection bias (92.3%) and interviewer bias (84.6%). Approximately 38.5% (5/13) of studies were prospective and 69.2% (9/13) were retrospective. The patient demographics, study design, diagnosis, follow-up duration, location of surgeries, and surgical approach are summarized in Table 2. The mean collective sample size was 42.5 (range 20–142). The collective ratio of male to female study participants was 1 to 1.5. The mean collective follow-up duration was 41.8 months (range 3–120 months). Supplemental posterior screw fixation was performed in 43.5% (240/552) of patients, whereas ALIF was performed alone in 56.5% (312/552) of patients. The most common operated levels were L4–5 and L5–S1, with 9 ALIF and found that complication rates were similar between mini-open and laparoscopic approaches. In direct comparisons between mini-open and traditional-open approaches, there appear to be no substantial differences. A prospective study of 50 consecutive total patients comparing the two approaches found there was no difference in surgical duration, blood loss, or length of stay, although the complication rate was higher among the laparoscopic group. There do not appear to be evidence, and 2 studies were level II evidence. In these studies, the MIS ALIF indications including degenerative disc diseases (DDDs), foraminal stenosis, spinal deformity, and failed posterior fusion were similar to the open ALIF indications. Associated symptoms include neurogenic claudication, radiculopathy, and leg or low-back pain. All studies reported a decrease in overall mean back pain VAS scores postoperatively. Although there was a wide range of complications after MIS ALIF, the complication rates were low overall. The most prevalent complications were bladder or urinary dysfunction (2.5%, 14/552), infection (2.4%, 13/552), and hardware-related complications (2.2%, 12/552).

Mini-Open and Laparoscopic

MIS ALIF can be performed via a mini-open exposure versus laparoscopic assistance. The mini-open approach is a variation on the original open approach that utilizes muscle-splitting techniques to minimize soft-tissue trauma. A prospective study of 684 patients concluded that the mini-open approach could be performed quickly with low rates of complications. A laparoscopic approach was also developed after improvements in interbody fusion cage technologies. Regan et al. described a study of 240 total patients who underwent either laparoscopic or traditional-approach ALIF and found that complication rates were similar between groups, but the laparoscopic group had shorter hospital length of stay and reduced intraoperative blood loss. However, the authors conceded that the approach was technically difficult and that 10% of cases were converted to open approaches. In direct comparisons between mini-open and laparoscopic approaches, there appear to be no substantial differences. A prospective study of 50 consecutive total patients comparing the two approaches found there was no difference in surgical duration, blood loss, or length of stay, although the complication rate was higher among the laparoscopic group. There do not appear to be...
Our review evaluated studies utilizing both techniques. The VAS score for back pain was significantly reduced postoperatively in all studies. The laparoscopic approach is more technically difficult. One consideration with any minimally invasive approach is that vascular injury can be difficult to control through small exposures.

VAS Outcomes

MIS ALIF has been shown to reduce back pain in appropriately selected patients with high-grade spondylolisthesis, DDD, central canal stenosis, and spinal deformity. All studies showed a significant reduction in VAS scores postoperatively (Table 2). For example, Hironaka et al. retrospectively reviewed 142 patients undergoing L4–5 mini-open ALIF for degenerative disease and found that VAS scores for back pain were significantly reduced postoperatively. The reason is likely that ALIF allows for anterior longitudinal ligament release and larger anterior interbody placement, restoring physiological lumbar lordosis. MIS ALIF may prevent damage to paraspinal muscles and ligaments because anterior interbody placement may circumvent the requirement for posterior decompression in comparison to other approaches. However, there have been variable rates of fusion in the literature, which may be why standalone ALIF is less common and often augmented with posterior fixation. MIS ALIF shows pain reduction comparable to open techniques.

Complications

A summary of complications for each study is listed in Table 4. Complications from ALIF are rare but have the potential to be devastating. The risk is augmented when the exposure is smaller, as is with MIS approaches. Although the rates were low, the various complications reported in
low quality. Further higher quality research is required although evidence in the literature has been limited and of rates are comparable among MIS and open approaches, with ALIF occur around L4–5. The vascular complicationorrhaging in these cases. Most vascular injuries associated often converted to open approaches to control hemorrhaging in these cases. Most vascular injuries associated with ALIF occur around L4–5. The vascular complication rates are comparable among MIS and open approaches, although evidence in the literature has been limited and of low quality. Further higher quality research is required to evaluate the exact difference in complication risk between MIS and open approaches.

TABLE 4. Complication reported

<table>
<thead>
<tr>
<th>Authors & Year</th>
<th>Complication Rate</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aunoble et al., 2006(^{15})</td>
<td>NA</td>
<td>1/20 vascular complication, 1/20 donor-site infection, 1/20 superficial wound dehiscence</td>
</tr>
<tr>
<td>Chung et al., 2003(^{3}) (laparoscopic)</td>
<td>13.64%</td>
<td>1/22 cage malposition, 1/22 retrograde ejaculation, 1/22 bladder dysfunction</td>
</tr>
<tr>
<td>Chung et al., 2003(^{3}) (mini-open)</td>
<td>9.09%</td>
<td>1/22 deep vein thrombosis, 1/22 bladder dysfunction</td>
</tr>
<tr>
<td>Farah et al., 2018(^{15})</td>
<td>4.60%</td>
<td>1/43 superficial wound infection, 1/43 urinary infection</td>
</tr>
<tr>
<td>Flouzat-Lachaniette et al., 2015(^{16})</td>
<td>12.70%</td>
<td>1/47 iliac vein laceration, 1/47 ureteral injury, 1/47 L3 corporeal fracture, 2/47 endplate fractures, 1/47 L5 palsy, 1/47 acute coronary syndrome, 1/47 cardiac arrest, 1/47 acute cardiac, 1/47 common bile duct lithiasis, 6/47 acute urinary retention, 4/47 urinary tract infection, 1/47 paralytic ileus</td>
</tr>
<tr>
<td>Hironaka et al., 2013(^{17})</td>
<td>2.82%</td>
<td>1/142 wound infection, 1/142 liquorhrea due to a dural tear injury, 1/142 vertebral body fractures needing a posterior pedicle screw fixation, 1/142 misplaced cage that required revision</td>
</tr>
<tr>
<td>Kim et al., 2010(^{19})</td>
<td>8.20%</td>
<td>3/73 left iliac vein injuries, 2/73 wound hematomas, 1/73 deep vein thrombosis</td>
</tr>
<tr>
<td>Kleeman et al., 2001(^{20})</td>
<td>9.00%</td>
<td>1/22 bowel injury, 1/22 vascular injury</td>
</tr>
<tr>
<td>Lin et al., 2015(^{21})</td>
<td>45.45%</td>
<td>5/22 urinary retention, 3/22 constipation, 2/22 numbness in thigh</td>
</tr>
<tr>
<td>Mamuti et al., 2016(^{9})</td>
<td>5.71%</td>
<td>1/35 deep vein thrombosis, 1/35 retrograde ejaculation and unilateral vasodilation of lower limb</td>
</tr>
<tr>
<td>Park et al., 2009(^{22})</td>
<td>0%</td>
<td>None</td>
</tr>
<tr>
<td>Shim et al., 2005(^{23})</td>
<td>5.00%</td>
<td>1/20 compressed L5 root and radicular pain</td>
</tr>
<tr>
<td>Tobler & Ferrara, 2011(^{24})</td>
<td>NA</td>
<td>7/26 pedicle screw removal for pain, 2/26 foraminal stenosis radiculopathy, 1/26 incisional pain, 1/26 nerve impingement from pedicle screw</td>
</tr>
</tbody>
</table>

our studies were wide and included vascular injury, retrograde ejaculation, bladder dysfunction, wound complications, infection, proximal junctional kyphosis, screw loosening, ileus, and nerve impingement. Complications varied between studies. For example, Flouzat-Lachaniette et al. reported urinary symptoms as being most common, while Hosseini et al. reported more structural complications (e.g., proximal junction kyphosis, screw loosening, etc.)\(^{16,18}\) There were 4 studies that reported vascular injury, and the rates were low overall (1.1%). MIS approaches are often converted to open approaches to control hemorrhaging in these cases. Most vascular injuries associated with ALIF occur around L4–5. The vascular complication rates are comparable among MIS and open approaches, although evidence in the literature has been limited and of low quality.\(^{35}\) Further higher quality research is required to evaluate the exact difference in complication risk between MIS and open approaches.

Study Limitations

There are limitations to our study that must be considered. First, the majority of studies were retrospective and of a low level of evidence, as summarized in Table 1. Although retrospective studies are typical of spine literature, they are vulnerable to recall or response biases. Second, the sample size was small for most of the studies included (e.g., fewer than 100 subjects), which confers vulnerability to potential biases such as publication bias. Third, there was heterogeneity among the studies in terms of indications for MIS ALIF (e.g., disc degeneration, spondylolisthesis, disc herniation, scoliosis, pseudoarthrosis, etc.). Fourth, there was heterogeneity in terms of technique (e.g., laparoscopic vs mini-open) that also made standardization of results challenging. These limitations should be considered when drawing conclusions from our study.

Conclusions

We presented a systematic review of pain outcomes following MIS ALIF, which included mini-open and laparoscopic techniques. There was a reliable reduction in back pain postoperatively across all included studies. The complication rates were low, including vascular injury. Future studies should focus on a higher level of evidence and larger sample sizes.

References

5. Chan AK, Mummaneni PV, Shaffrey CI. Approach selection:

Disclosures

Dr. Andrew K. Chan reports support of non–study-related clinical or research effort from Orthofix Medical, Inc.

Author Contributions

Correspondence

Michael Y. Oh: University of California, Irvine, CA. ohm2@hs.uci.edu.