A review of potential applications of MR-guided focused ultrasound for targeting brain tumor therapy

Layton Lamsam, BS;1 Eli Johnson, BS;1 Ian D. Connolly, MS;1 Max Wintermark, MD;2 and Melanie Hayden Gephart, MD, MAS1

Departments of 1Neurosurgery and 2Radiology, Stanford University Medical Center, Stanford, California

Magnetic resonance–guided focused ultrasound (MRgFUS) has been used extensively to ablate brain tissue in movement disorders, such as essential tremor. At a lower energy, MRgFUS can disrupt the blood-brain barrier (BBB) to allow passage of drugs. This focal disruption of the BBB can target systemic medications to specific portions of the brain, such as for brain tumors. Current methods to bypass the BBB are invasive, as the BBB is relatively impermeable to systemically delivered antineoplastic agents. Multiple healthy and brain tumor animal models have suggested that MRgFUS disrupts the BBB and focally increases the concentration of systemically delivered antitumor chemotherapy, immunotherapy, and gene therapy. In animal tumor models, combining MRgFUS with systemic drug delivery increases median survival times and delays tumor progression. Liposomes, modified microbubbles, and magnetic nanoparticles, combined with MRgFUS, more effectively deliver chemotherapy to brain tumors. MRgFUS has great potential to enhance brain tumor drug delivery, while limiting treatment toxicity to the healthy brain.

https://thejns.org/doi/abs/10.3171/2017.11.FOCUS17620

KEY WORDS targeted drug delivery; MR-guided; image-guided; focused ultrasound; blood-brain barrier; brain tumor

The blood-brain barrier (BBB) protects the brain from fluctuations in plasma concentrations and toxins capable of disturbing neural function. The BBB also restricts the delivery of drugs to the brain, as it is impermeable to most biological and small-molecule therapeutics.1 Limitations in drug transport across the BBB have made treating CNS tumors difficult.37,48,49,52 Magnetic resonance–guided focused ultrasound (MRgFUS) uses acoustic waves in the ultrasound spectrum to transiently raise the temperature or activate molecules at a specific location. This emerging technology is used primarily for thermal ablation of central brain locations, such as for the treatment of essential tremor and Parkinson’s disease.5,21,41,50 MRgFUS is an image-guided, noninvasive treatment option that can be used to manipulate the BBB and achieve focal CNS tumor drug delivery of systemically administered treatments.

Background
The Blood-Brain and Blood-Tumor Barriers

The BBB is composed of endothelial cells, astrocyte foot processes, and pericytes.4 Tight junctions between these cells form a barrier, preventing transcellular and paracellular diffusion of most substances from entering the brain. Multiple transport systems, enzymes, and receptors involved in the regulation of the BBB have been identified.12 Tight regulation of the BBB maintains cerebral function by preventing the passive crossing of cells and molecules that are capable of inducing inflammation and damage to the CNS.13 Consequently, methods of bypassing the BBB for therapeutic effect should be targeted and transient to prevent global brain injury.

The blood-tumor barrier (BTB), located between the malignancy and blood vessels, is formed after the tumor is larger than 0.2 mm3.32 As the tumors grow, astrocyte foot processes are displaced from blood vessels by malignant cells, leading to perpetual fenestration of the BBB.58 Although the level of disruption often remains subtherapeutic, BTB-targeted drug delivery holds promise for effective treatment of brain tumors through increased permeability.

Conventional Approaches to Drug Delivery in the Brain

Ostrom et al. predicted that there would be more than 79,000 new cases of brain metastases and primary brain tumors in 2017 in the United States.44 Peripherally administered chemotherapy must cross the BTB to achieve a...
MRgFUS and Microbubbles Focally Disrupt the BBB

MRgFUS with microbubbles has been shown to transiently disrupt the BBB for up to 24 hours. Focused ultrasound (FUS) can cause expansion of the gaseous microbubbles until they rupture in a process termed inertial cavitation. Lower FUS power levels instead lead to oscillation of the microbubbles, known as stable cavitation. Stable cavitation temporarily increases the permeability of the BBB, either through mechanical disruption or by inducing physiological changes in BBB cells (Fig. 1). There is evidence for both of these mechanisms; transcellular and paracellular passage of molecules has been found with FUS. MRgFUS focal disruption of the BBB can increase the therapeutic concentration within a brain tumor of systemically administered drug while limiting toxicity to the normal brain and systemic organs. Several studies have suggested that the ability of MRgFUS and microbubbles to disrupt the BBB for passage of chemotherapeutics also extends to the BTB. In a rat brain glioma model of intravenous doxorubicin (DOX), Park et al. reported that MRgFUS increased DOX concentrations in gliomas by more than 2.5 times at 1 hour posttreatment compared with gliomas not receiving MRgFUS (p < 0.01). At 24 hours posttreatment, DOX concentrations in gliomas with MRgFUS were almost 14 times higher than those without MRgFUS (p < 0.001). The authors also found that gliomas with MRgFUS had no sig-

FIG. 1. A: Schematic of an ablational FUS array with beams converging at a target site. B: Schematic of an FUS beam penetrating across the calvaria toward the site of a tumor. Arteries and veins are shown as red and blue circles, respectively The boxed portion is further highlighted in panel C. C: Schematic of an intact BBB composed of endothelial cells, tight junctions, and astrocytic foot processes. An FUS beam disrupts the BBB with oscillating microbubbles, allowing penetration by therapeutics near the site of a tumor. Copyright Ian D. Connolly. Published with permission.
significant change in DOX concentration between 1 hour and 24 hours posttreatment. In contrast, DOX concentrations at 24 hours posttreatment in gliomas without MRgFUS were approximately 20% of the 1-hour posttreatment levels (p < 0.01). This suggests that MRgFUS may not only increase the delivery of drugs across the BTB but also prolong the time on target. The only side effects reported were regions of petechiae smaller than 1 mm that represented extravasation of red blood cells due to blood vessel damage. The BBB and BTB may respond differently to the same dose equivalent of MRgFUS depending on the systemic treatment or tumor. In the study by Park et al., DOX was able to cross the BTB at higher rates than the healthy BBB, but in another study using a similar model with BCNU, the BTB was more challenging to disrupt with MRgFUS than the BBB. MRgFUS at the same dose equivalent increased delivery of BCNU into normal brain tissue by 340% in normal rats, but by only 202% in the tumor-implanted rats (p < 0.05). This suggests that MRgFUS disruption of the BTB may be treatment dependent, and not directly corollary to disruption of the BBB. Figure 2 shows results from an unpublished experiment in tumor-implanted mice using MRgFUS and microbubbles, which is representative of MRgFUS in animal models.

Combining Systemic Chemotherapy With MRgFUS Disruption of the BTB Improves Outcomes

As MRgFUS disrupts the BTB and increases systemic drug penetrance, tumors are more effectively treated and survival is improved. For example, in a rat glioma model with systemic delivery of BCNU, the addition of MRgFUS to disrupt the BTB improved the median survival time compared with no treatment (53 days vs 29 days, p < 0.0015) or BCNU alone (53 days vs 32 days, significance not reported). The improvement in outcomes required concomitant delivery of systemic chemotherapy, as MRgFUS alone showed no benefit. Similar results were found with the use of temozolomide (TMZ) with MRgFUS in rat glioma, with a significantly increased median survival time over no treatment (23 days vs 20 days, p < 0.001). TMZ alone did not show a significant difference compared with no treatment (21 days vs 20 days, p = 0.09). MRgFUS+TMZ slowed tumor growth significantly more than TMZ alone (p = 0.002), with the 1-week tumor growth being 21 times the starting volume without MRgFUS and 5 times with MRgFUS. MRgFUS improves the delivery of systemic chemotherapy and increases treatment efficacy, although the dose-response relationship has not been explored in depth.

Liposome Encapsulation and MRgFUS-Enhanced Drug Delivery

Liposome encapsulation of systemic chemotherapies effectively reduces systemic toxicity. This is due in part to lower levels of chemotherapy at nontumor sites, although the exact mechanism is unclear. Recent studies have combined liposome-encapsulated DOX (LeDOX) with MRgFUS-enhanced drug delivery. An early study in healthy rats showed that LeDOX paired with MRgFUS could achieve target therapeutic levels of DOX in the brain, with nontargeted brain regions having significantly lower DOX concentrations. A study in a rat glioma model with a single LeDOX+MRgFUS treatment showed a significantly increased median survival time compared with no treatment (31 days vs 25 days, p < 0.001), whereas LeDOX alone could not produce significant results (29 days vs 25 days, p = 0.17). Another rat glioma model used 3 LeDOX+MRgFUS treatments and reported similar median survival results for LeDOX+MRgFUS (35 days vs 18 days [no treatment], p < 0.001) and LeDOX alone (20 days vs 18 days [no treatment], p = 0.16) compared with no treatment. Side effects were noted in the LeDOX+MRgFUS rats, including impaired activity (2 of 8), brain tissue damage and/or necrosis (4 of 8), and intratumoral hemorrhage (1 of 8) after 3 treatments of 5.67 mg/kg LeDOX+MRgFUS. The only side effect noted in LeDOX-alone group was impaired activity (1 of 6). Neither study reported the significance of LeDOX+MRgFUS versus LeDOX alone. Recent evaluation of a stabilized long-circulating liposomal paclitaxel (LePTX) in a mouse model of glioblastoma showed results similar to the LeDOX studies, with a significantly improved median survival time (47 days vs 39 days, p < 0.001) compared with no treatment. Again, results were not directly compared

FIG. 2. A and B: Postgadolinium T1-weighted MR images obtained in a mouse, showing a brain tumor graft in the right mouse brain hemisphere (arrows) before MRgFUS application (A) and increased enhancement (arrowheads) due to BBB opening after MRgFUS (B), overlapping both brain tumor and adjacent normal tissue. C: Before MRgFUS application (FUS-), the volume transfer constant (Ktrans) measured from dynamic contrast-enhanced imaging was higher in the tumor than that in the normal brain tissue. After application (FUS+), BBB opening increased in both normal and tumor tissue.
with LePTX alone, but LePTX alone failed to demonstrate significance compared with no treatment (41 days vs 39 days, \(p = 0.07\)).

Modified liposomes have also been shown to improve MRgFUS-facilitated delivery of systemic chemotherapy. For example, in a mouse glioma model, LeDOX conjugated with a peptide ligand for interleukin (IL)–4 receptor, highly expressed in human brain tumors, showed a significant improvement in median survival time compared with no treatment (15 days vs 9 days, \(p = 0.0001\)) or ligand-conjugated LeDOX alone (15 days vs 3 days, \(p = 0.017\)).\(^{56}\) DOX encapsulated in cationic liposomes (cLeDOX) accumulate preferentially in tumor tissue due to their positive charge. MRgFUS+cLeDOX modestly improved median survival over cLeDOX alone in a rat glioma model (81 days vs 35 days, \(p < 0.001\)), both of which were significantly greater than no treatment (17 ± 2 days, \(p < 0.001\)).\(^{28}\) Neither study compared the modified liposomes to unmodified liposomes, so it is unclear if these present an advantage.

Nanoparticle Conjugation and MRgFUS

Nanoparticles present an alternative to liposomal encapsulation, which has been shown to have its own potential side effects.\(^{34}\) Magnetic nanoparticle (MNP) drug delivery promises to be highly synergistic with MRgFUS. MNPs can be conjugated to chemotherapy and enriched in a targeted area by using a magnetic field generated by an external magnet to attract them, which is termed magnetic targeting (MT).\(^{11}\) MNPs also act as a contrast agent, potentially eliminating the need for gadolinium in MRgFUS treatment delivery.\(^{57}\) MNPs have difficulty crossing the BBB, but combined with MRgFUS, they can accumulate at high levels in brain tissue.\(^{58}\) The system operates in an open-then-pull manner, in which the BBB is first permeabilized by MRgFUS and then circulating MNPs are pulled through the permeabilized area of disrupted BBB via a magnetic field.

Preliminary studies in animals have shown promise for the combination of MNPs and MRgFUS to improve treatment delivery to brain tumors. For example, a rat model of glioma treated with epirubicin-conjugated MNP + MRgFUS+MT showed a 2.4-fold increase in MNP accumulation compared with the contralateral hemisphere, whereas MNP+MRgFUS without MT achieved a 1.2-fold increase (significance not reported).\(^{30}\) This increase in MNP accumulation led to a 16-fold increase in the concentration of epirubicin in MRgFUS+MT–treated brain tissue, compared with MRgFUS alone (significance not reported). The MNP+MRgFUS+MT–treated group showed prolonged survival time compared with no treatment (31 days vs 18 days, \(p = 0.0002\)) or MNP+MRgFUS without MT (30.5 days vs 20 days, significance not reported). Tumor growth over 7 days was also delayed in the MNP+MRgFUS+MT group compared with no treatment (106% ± 24% vs 313% ± 103%, significance not reported). The authors noted, however, that performing MT within the longer distances of human anatomy would likely require a superconducting magnetic coil or MNPs that are more strongly magnetic. Similar conclusions were found when using BCNU.\(^{50}\) Both MRgFUS alone and MT alone increased MNP brain concentration by 2-fold in the treated compared with the untreated brain regions, but MNP+MRgFUS+MT increased MNP accumulation by almost 10-fold compared with the untreated region and 26-fold compared with MNP without additional treatment (significance not reported). The mean change in tumor volume at 1 week posttreatment showed that the medium-dose MNP+MRgFUS+MT group effectively experienced delayed tumor progression compared with no treatment (−0.79 ± 0.35 cm\(^3\) vs 2.98 ± 2.61 cm\(^3\), \(p < 0.05\)) or MNP alone (−0.79 ± 0.35 cm\(^3\) vs 2.96 ± 3.00 cm\(^3\), significance not reported). In addition, MNP alone was superior to unbound BCNU (1.15 ± 1.58 cm\(^3\) vs 2.48 ± 3.09 cm\(^3\), significance not reported). Results from low- and high-dose MNPs demonstrated that this effect was dose dependent.

Efforts at further simplifying MNP-containing protocols have resulted in microbubbles that are conjugated with superparamagnetic iron oxide nanoparticles (SPIONs, a type of MNP) and loaded with DOX.\(^{39}\) Thus, a single substance combines the functionality of microbubbles, gadolinium contrast, and chemotherapy-conjugated MNPs with delivery enhanced by MRgFUS+MT. In a rat glioma model, SPION deposition in MT+MRgFUS increased by 4-fold (\(p < 0.01\)) compared with the contralateral, nontargeted hemisphere. MRgFUS alone and MT only enhanced accumulation by 2.7-fold (\(p < 0.01\)) and 2.3-fold (\(p < 0.05\)), respectively. Similarly, the MT+MRgFUS group increased DOX deposition in the treated hemisphere by 2-fold (\(p < 0.05\)) compared with the control hemisphere. The follow-up study used a different formulation that improved DOX-carrying capacity and R2 relaxivity, thus allowing the authors to track tissue accumulation more accurately via MR relaxometry.\(^{17}\) SPION-DOX complexes accumulated in MRgFUS-targeted brain tissue at a 2.8-fold (\(p < 0.05\)) higher concentration when MT was applied versus without it. Likewise, DOX deposition into targeted brain tissue was enhanced by more than 2.1-fold (\(p < 0.05\)) with MT. The authors found that the MR R2 value and SPION concentration were highly correlated (R\(^2\) = 0.83), and furthermore, SPION concentration was highly correlated (R\(^2\) = 0.79) with DOX accumulation. The combination SPION-DOX microbubbles may prove useful due to the ease with which dosing could be monitored through imaging.

Chemotherapy With Modified Microbubbles and Ultrasound-Guided FUS

Microbubble-encapsulated BCNU used with ultrasound-guided FUS (USgFUS) prolonged the half-life and reduced peripheral uptake of BCNU, decreasing tumor progression in glioma rats.\(^{54}\) In particular, liver deposition of BCNU 10 minutes after treatment with microbubble-encapsulated BCNU was 9-fold than that of BCNU only (significance not reported), whereas encapsulated BCNU with FUS was 5-fold less than that of BCNU (\(p < 0.01\), with FUS). Another study showed that USgFUS could oscillate BCNU-loaded microbubbles at their resonant frequency, producing stable cavitation and reducing the chance of red blood cell extravasation.\(^{18}\) The median survival was improved compared with no treatment (28 days vs 18 days, \(p = 0.001\)), but no comparison was made with free BCNU with unmodified microbubbles. Micro-
bubbles can be further modified with moieties designed to target tumor markers like VEGF, which one study reported could be used with USgFUS to prolong survival in rat glioma. The experimental group had increased median survival compared with no treatment (42 days vs 19 days, $p = 0.007$) or BCNU alone (42 days vs 23 days, significance not reported). Notably, the nontargeted BCNU-loaded microbubbles with FUS did not have a significant increase in median survival compared with no treatment. Liver accumulation was 3-fold less in the VEGF-targeted experimental group than in the nontargeted group ($p < 0.05$). Whether chemotherapy is loaded onto liposomes, MNPs, or microbubbles, tumor-targeting moieties will be a part of future MRgFUS-coupled drug delivery systems.

Immunotherapy and MRgFUS

Research on immunotherapy usage with MRgFUS for brain tumors has largely been limited to delivery of HER2-targeting antibodies for treatment of breast cancer metastases. In a mouse model, FUS treatment effectively delivered trastuzumab, with dose limited by red blood cell extravasation. Without MRgFUS, brain tissue levels of trastuzumab were undetectable in all but one case. In a rat model of HER2-positive human breast cancer metastases to the brain, Park et al. reported that MRgFUS-delivered trastuzumab increased the median survival time compared with no treatment (83 days vs 63 days, $p = 0.008$) and trastuzumab only (83 days vs 71 days, not significant), with a significant reduction in tumor volume ($p < 0.05$ at week 7) compared with all other groups.26 Of note, this effect was derived from a subset of the experimental group, as 6 of 10 experimental mice were nonresponders. Rats treated with MRgFUS and peripherally administered HER2-specific NK-92 cells showed a longer mean survival time (times unreported, $p < 0.05$). Similar to the study by Park et al., about half of the treatment animals were nonresponders, following a survival curve similar to animals without treatment. The study found no histological signs of red blood cell extravasation, although the authors noted that a week or more elapsed between the last MRgFUS treatment and euthanization. In a rat glioma model, FUS increased the intraperitoneal IL-12 concentration in the brain by almost 2.9-fold ($p = 0.003$) versus without FUS.9 The IL-12 + FUS significantly increased T-lymphocyte presence inside the tumors compared with sham treatment ($\text{CD}^3\cdot\text{CD}^4^+$: 4-fold, $p < 0.001$; $\text{CD}^3\cdot\text{CD}^8^+$: 5-fold, $p < 0.01$; $\text{CD}^4\cdot\text{CD}^{25^+}$: 2-fold, $p < 0.05$; cytotoxic-to-regulatory T-cell ratio increase: 2.5-fold, $p < 0.001$). This effect was not seen in healthy rats or systemically in tumor-implanted rats. Median survival time was increased compared with no treatment (30 days vs 21 days, $p < 0.001$) and IL-12 alone (30 days vs 26 days, significance not reported). Immunotherapies could be rapidly integrated into MRgFUS protocols, should targeting in animal models continue to show promise.

Gene Therapy and USgFUS

FUS as a means to deliver DNA-loaded microbubbles is an emerging field. Folate-conjugated cationic microbubbles (cMBs) containing DNA combined with ultrasound targeting successfully transfected tumor cells in a rat glioma model.16 Treatment with FUS and folate-conjugated cMBs improved reporter gene expression in tumor tissue by 4.7-fold compared with direct injection ($p < 0.01$) and 1.5-fold (significance not reported) compared with cMBs without folate conjugation. Expression was only found within the tumor. An additional study in a rat glioma model used DNA-loaded cMBs conjugated with VEGF-targeted monoclonal antibodies.8 Reporter gene expression in tissue receiving targeted or nontargeted cMBs + FUS was 3.7-fold ($p < 0.01$) and 2.3-fold ($p < 0.05$) higher, respectively, than direct DNA injection into the tumor. The authors then tested the cMBs with a suicide gene previously tested with ultrasound, $pHSV-TK$, which converts ganciclovir into a product that terminates DNA replication and results in tumor death.61 The cMBs+FUS decreased tumor volume at day 25 compared with direct injection (9.7 ± 5.2 mm3 vs 40.1 ± 4.3 mm3, significance not reported) and nontargeted cMBs (9.7 ± 5.2 mm3 vs 21.8 ± 4.7 mm3, significance not reported). Both targeted and nontargeted cMBs had significantly decreased tumor volume ($p < 0.01$) and increased median survival time ($p < 0.05$) compared with untreated controls. Among brain tumor therapeutics used with FUS, gene therapy is the least developed. Incorporation of MR guidance as this technology nears clinical trials will be necessary for imaging through the human skull.

Limitations

Promising preclinical studies in animal models will need to be tested thoroughly in humans. A Phase 1 clinical trial should be conducted to evaluate toxicity and determine the safe levels for MRgFUS strength, and the choice, dosing, and timing of systemic chemotherapeutic agents. Compared with rodents, the thicker human skull and the longer distances to any given point within the human cranium will attenuate ultrasound, requiring higher power. Likewise, tumor depth may limit which types of lesions could be reasonably treated. Severe or symptomatic peritumoral edema may be exacerbated by further disruption of the BTB. Setups with stereotactic frames would be difficult to use in patients requiring multiple FUS treatments, but frameless designs, such as the NaviFUS system, are being developed.3 A risk of hemorrhage has been documented in animal models, but it is uncertain how this will translate to humans.25,47 The only relevant study in humans is a nonrandomized, single-arm Phase 1 clinical trial (registration no. NCT02986932, clinicaltrials.gov) evaluating the safety of BBB opening with FUS in 6 patients with Alzheimer’s disease. Patients will be followed out to 2 months after opening a 3 × 3-cm area of BBB. Results have not yet been released. Experiences with high-intensity focused ultrasound in the ablation of brain tumors in human patients have yielded minimal side effects other than pain symptoms possibly related to dural heating.12,39

Conclusions

MRgFUS holds significant promise for less invasive, repeatable, targeted drug delivery to brain tumors. It may act synergistically with drug delivery technologies that can further enhance delivery and treatment release within the desired tissue, including nanoparticles and liposomes. In
animal models, MRgFUS has been shown to successfully enhance the delivery of chemotherapy, immunotherapy, and gene therapy with corresponding improvements in treatment efficiency, tumor progression, and overall survival.

References

41. Miller DB, O’Callaghan JP: New horizons for focused ultrasound. Neurosurg Focus Volume 44 • February 2018

Disclosures
The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author Contributions
Conception and design: Hayden Gephart, Wintermark. Acquisition of data: Lamsam, Johnson, Connolly. Analysis and interpretation of data: Lamsam, Johnson, Connolly. Drafting the article: Lamsam, Johnson, Connolly. Critically revising the article: Lamsam, Johnson, Connolly. Study supervision: Hayden Gephart, Lamsam, Wintermark.

Correspondence
Melanie Hayden Gephart: Stanford University Medical Center, Stanford, CA. mghayden@stanford.edu.