INTRODUCTION

Cervical arthroplasty

Domagoj Coric, MD,1,2 Praveen V. Mummaneni, MD,3 Vincent Traynelis, MD,4 and Jeffrey Wang, MD5

1Carolina Neurosurgery and Spine Associates and 2Carolinas Medical Center, Charlotte, North Carolina; 3Department of Neurological Surgery, University of California, San Francisco, California; 4Department of Neurosurgery, Rush Medical Center, Chicago, Illinois; and 5Department of Orthopaedic Surgery, Keck Medicine of USC, Los Angeles, California

There has been a steady evolution of devices for cervical total disc replacement (TDR) over the last decade that has resulted in a surgical technique that closely mimics that for anterior cervical discectomy and fusion (ACDF); disc designs now incorporate novel biomaterials and biomechanics that emphasize quality of motion. The efficacy of cervical arthroplasty has been established with a firm basis of evidence wrought through peer-reviewed published data reported in multiple prospective, randomized, controlled investigational device exemption (IDE) studies,2,5,6,12,18,19,21,27 a number of which now have long-term follow-up.7,23,29 For properly selected patients with 1- and 2-level cervical radiculopathy from C-3 to C-7, cervical arthroplasty is now a standard-of-care treatment, along with ACDF and posterior cervical foraminotomy. There is strong biomechanical and clinical evidence confirming that motion preservation decreases adjacent-level stresses and the rate of radiographic adjacent-level degeneration.1,3,4,8–10,16,20,22,24,28 There are also some data to suggest that arthroplasty positively affects the incidence of clinical adjacent-level reoperation,11,13,17,25,26 but adjacent-level disease is a multifactorial process that deserves continued study. Cervical arthroplasty continues to evolve, with expanded indications44 (there are 2 different FDA-approved devices for 2-level disease), increased adoption by surgeons and payers, and the introduction of new devices55 (2 next-generation devices are currently under IDE study).

This Neurosurgical Focus issue highlights some of the most current information regarding cervical arthroplasty from experienced surgeons not only in the US but from around the world.

https://thejns.org/doi/abs/10.3171/2016.11.FOCUS16491

References

Introduction

fusion with 4-year follow-up and continued access patients. 
SAS J 4:122–128, 2010
8. DiAngelo DJ, Roberston JT, Metcalf NH, McVay BJ, Davis 
RC: Biomechanical testing of an artificial cervical joint and 
anterior cervical plate. J Spinal Disord Tech 16:314–323, 
2003
Mcafee PC: Adjacent level intradiscal pressure and segmental 
30:1165–1172, 2005
10. Eck JC, Humphreys SC, Lim TH, Jeong ST, Kim JG, Hodges 
SD, et al: Biomechanical study on the effect of cervical spine 
fusion on adjacent-level intradiscal pressure and segmental 
analysis comparing the results of cervical disc arthroplasty 
with anterior cervical discectomy and fusion (ACDF) for the 
treatment of symptomatic cervical disc disease. J Bone Joint 
12. Heller JG, Sasso RC, Papadopoulos SM, Anderson PA, Fes-
sler RG, Hacker RJ, et al: Comparison of BRYAN cervical 
disc arthroplasty with anterior cervical decompression and 
fusion: clinical and radiographic results of a randomized, 
controlled, clinical trial. Spine (Phila Pa 1976) 34:101–107, 
2009
13. Ishihara H, Kanamori M, Kawaguchi Y, Nakamura H, 
Kimura T: Adjacent segment disease after anterior cervical 
interbody fusion. Spine J 4:624–628, 2004
MS, et al: Comparison of radiographic changes after ACDF 
versus Bryan disc arthroplasty in single and bi-level cases. 
Eur Spine J 18:218–231, 2009
15. Laurysen C, Coric D, Dimmig T, Musante D, Ohmneiss MD, 
Stubbs HA: Cervical total disc replacement using a novel 
compressible prosthesis: Results from a prospective Food 
and Drug Administration–regulated feasibility study with 
16. Matsunaga S, Kabayama S, Yamamoto T, Yone K, Sakou 
T, Nakanishi K: Strain on intervertebral discs after anterior 
24:670–675, 1999
17. McAfee PC, Reah C, Gilder K, Eisermann L, Cunningham 
B: A meta-analysis of comparative outcomes following cer-
vical arthroplasty or anterior cervical fusion: results from 4 
prospective multicenter randomized clinical trials and up to 
18. Mummaneni PV, Burkus JK, Haid RW, Traynells VC, Zebe-
bick TA: Clinical and radiographic analysis of cervical disc 
arthroplasty compared with allograft fusion: a randomized 
19. Murrey D, Janssen M, Delamarter R, Goldstein J, Zigler J, 
Tay B, et al: Results of the prospective, randomized, con-
trolled multicenter Food and Drug Administration investi-
gation device exemption study of the ProDisc-C total disc 
replacem ent versus anterior discectomy and fusion for the 
20. Park DK, Lin EL, Phillips FM: Index and adjacent level ki-
clinical investigation comparing PCM cervical disc arthroplasty 
with anterior cervical discectomy and fusion. 2-year results 
from the US FDA IDE clinical trial. Spine (Phila Pa 1976) 
38:E907–E918, 2013
22. Puttlitz CM, Rousseau MA, Xu Z, Hu S, Tay BK, Lotz JC: 
Intervertebral disc replacement maintains cervical spine ki-
23. Radliff K, Coric D, Albert T: Five-year clinical results of 
cervical total disc replacement compared with anterior dis-
cectomy and fusion for treatment of 2-level symptomatic 
degenerative disc disease: a prospective, randomized, con-
trolled, multicenter investigational device exemption clinical 
24. Reitman CA, Hipp JA, Nguyen L, Essex SI: Changes in seg-
2004
25. Robertson JT, Papadopoulos SM, Traynells VC: Assessment 
of adjacent-segment disease in patients treated with cervical 
fusion or arthroplasty: a prospective 2-year study. J Neuro-
surg Spine 3:417–423, 2005
B, et al: Analysis of the three United States Food and Drug 
Administration investigational device exemption cervical 
27. Vaccaro A, Beutler W, Peppelman W, Marzullum JM, High-
constrained SECURE-C cervical disc arthroplasty: two-year 
results from a prospective, randomized, controlled, multi-
son J: Influence of an artificial cervical joint compared with 
fusion on adjacent-level motion in the treatment of degenera-
tive cervical disc disease. J Neurosurg 96 (1 Suppl):17–21, 
2002
29. Zigler JE, Delamarter RB, Murrey D, Spivak J, Janssen M: 
ProDisc-C and anterior cervical discectomy and fusion as 
surgical treatment for single level cervical symptomatic de-
generative disc disease: five-year results of a Food and Drug 
Administration study. Spine (Phila Pa 1976) 38:203–209, 
2013

Disclosures

Dr. Coric reports being a consultant for Medtronic, Stryker, 
Globus Medical, and Spine Wave; owning stock in Spine Wave 
and Spinal Kinetics; and receiving royalties from Premia Spine, 
and RTI Surgical. Dr. Mummaneni reports being a consultant 
for DePuy Spine, Globus Spine, and Stryker; owning stock in 
Spinicity/ISID; receiving grants/honoraria from AOSpine; and 
receiving royalties from Thieme, Taylor and Francis Publishing, 
Springer, and DePuy Spine. Dr. Wang reports being on the board 
of directors of the North American Spine Society, AOSpine, 
and Cervical Spine Research Society and being on the editorial 
boards of Spine, Journal of the American Academy of 
Disorders and Techniques, Global Spine Journal, and Journal of 
Orthopaedic Trauma.