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lasers could be used. The high sensitivity for lipid detec-
tion by SRS is well suited for imaging the central nervous 
system due to the high concentration of lipid-rich myelin. 
For example, focusing on the 2845 cm-1 shift is ideal for 
visualizing axon bundles in the corpus callosum due to the 
high lipid content of myelin sheaths.

To make in vivo imaging possible, a novel microscope 
configuration was designed to allow for approximately 
30% of the backscattered light to reach the objective, 3 

times more than standard microscopy.43 This advance in-
creased the imaging speed by 3 orders of magnitude to 
video-rate, eliminating motion artifact.

Ji and colleagues described the use of rapid, label-free 
SRS microscopy for in vivo imaging of brain tumors.22 A 
comparison of SRS microscopy versus traditional bright-
field microscopy of high- and low-grade glioma can be 
found in Fig. 2. Video-rate SRS microscopy in combi-
nation with a human infiltrative glioblastoma xenograft 

Fig. 2. SRS and traditional microscopy of intrinsic brain tumors.  A: SRS imaging of a glioblastoma multiforme (arrowhead) dem-
onstrating ring enhancement on MRI. B : Hypercellularity and nuclear atypia of viable tumor is apparent on both SRS (left) and H 
& E (right) microscopy.  C: Microvascular proliferation creates tortuous vascular complexes evident on SRS microscopy (left, ar-
rowheads) and is highlighted with periodic acid-Schiff staining (right, arrowhead).  D: Mitotic figures are also visible (arrowheads) 
with SRS microscopy (left) and H & E staining (right). E  and F: A nonenhancing, low-grade oligodendroglioma (arrowhead, E) 
consists of hypercellular tissue with nests of “fried-egg” morphology (arrowheads, F) causing minimal axonal disruption on SRS 
imaging (left), as confirmed through neurofilament immunostaining (right). G  and H: “Chicken wire” blood vessels (arrowheads, 
G) imaged with SRS (left) and H & E (right) microscopy, and perineuronal satellitosis is visible in both SRS (left) and H & E (right) 
microscopy (H). From Ji M, Lewis S, Camelo-Piragua S, Ramkissoon SH, Snuderl M, Venneti S, et al: Detection of human brain 
tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci Transl Med 7:309ra163, 2015. Reprinted with 
permission from AAAS.
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mouse model was used. A “cranial window” model with 
clear coverslip allowed for direct visualization of the cor-
tical surface that included normal brain and tumor inva-
sion.38 Normal and tumor-infiltrated brain at the cortical 
surface were easily identified on SRS microscopy that 
were not visible on standard bright-field microscopy. The 
brain/tumor interface was visible using a novel blue-green 
color scheme to highlight contrasting histological fea-
tures.14 Similar imaging results were noted after corticec-
tomy and dissection, simulating intraoperative conditions 
during brain tumor surgery. Moreover, this study showed a 
near-perfect correlation (k = 0.98) between SRS and H & 
E microscopy for detection of glioma infiltration based on 
neuropathologist assessment. These results indicate that in 
vivo SRS microscopy can approach the gold standard in 
histopathology.

Quantitative SRS microscopy was recently developed 
based on the alterations in tissue cellularity, axonal den-
sity, and protein/lipid ratio in tumor-infiltrated tissues.21 A 
classifier system based on these parameters was able to 
detect tumor infiltration with 97.5% sensitivity and 98.5% 
specificity. Quantitative SRS microscopy detected tumor 
infiltration in grossly normal brain, providing evidence 
that this technique could improve tumor detection dur-
ing brain tumor surgery. A comparison of the accuracy 
of tumor detection using Raman spectroscopy and CRS 
microscopy can be found in Table 3.

One barrier to translation of SRS microscopy into the 
clinical setting is determining how microscopic scale data, 
collected with small fields of view (400 × 400 mm) could 
be applied within the context of a large resection cavity. 
A previous clinical trial using intraoperative confocal mi-
croscopy for detection of low-grade glioma used a similar-
ly sized field of view (475 × 475 mm).45 Using an iterative 
image-resect-image technique throughout tumor removal, 
additional operative time was 10 minutes for image ac-

quisition and was not obstructive to surgical workflow. 
Based on previous advances in Raman-based technologies 
and our own preliminary work, our group has developed 
a clinical CRS microscopy system that is currently under 
evaluation for intraoperative use. We believe that Raman-
based technologies are nearing a critical point of clinical 
translation where large-scale clinical trials can be planned 
to confirm promising preclinical results.

Conclusions
Raman spectroscopy and CRS microscopy are promis-

ing novel methods in brain tumor surgery that have been 
developed to improve the accuracy of tumor detection and 
better characterize tumor invasion and molecular features. 
Real-time in vivo Raman spectroscopy is a developing 
tool in brain tumor surgery with potential for integration 
into the neurosurgical workflow. CRS microscopy is a 
rapid, label-free imaging method capable of identifying 
tumor and delineating the brain/tumor interface. CRS mi-
croscopy has near-perfect agreement with standard H & E 
microscopy, and tumor infiltration can be quantified with 
precision. It is our hope that leaving residual tumor will 
become an operative strategy used only to reduce post-
operative neurological morbidity, but never as a result of 
inadequate tumor identification. Translational research in 
Raman-based technology suggests that these methods will 
play an important role in improving the accuracy of brain 
tumor surgery.
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