A brief history of endoscopic spine surgery

Albert E. Telfeian, MD, PhD,1 Anand Veeravagu, MD,2 Adetokunbo A. Oyelese, MD, PhD,1 and Ziya L. Gokaslan, MD1

1Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island; and 2Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California

Few neurosurgeons practicing today have had training in the field of endoscopic spine surgery during residency or fellowship. Nevertheless, over the past 40 years individual spine surgeons from around the world have worked to create a subfield of minimally invasive spine surgery that takes the point of visualization away from the surgeon’s eye or the lens of a microscope and puts it directly at the point of spine pathology. What follows is an attempt to describe the story of how endoscopic spine surgery developed and to credit some of those who have been the biggest contributors to its development.

http://thejns.org/doi/abs/10.3171/2015.11.FOCUS15429

KEY WORDS endoscopic discectomy; minimally invasive; transforaminal approach

The history of endoscopic spine surgery has involved 3 phases: inspiration, invention, and innovation. The inspired early practitioners sought a means of accessing lumbar disc herniations that would be less invasive than traditional open techniques. The early endoscopic surgeons targeted disc pathology through a corridor that would become known eponymously for its originator, Dr. Parvis Kambin. Invention would then be required to make endoscopic discectomy a feasible and then a successful procedure: better working-channel rigid endoscopes, high-definition cameras, drills, trephines, articulated graspers, and other instruments (Fig. 1). With 50 years of groundwork on which to build, the innovators now have the tools and background knowledge to treat a myriad of spine pathologies beyond the herniated lumbar disc for which the technique was intended. The story of endoscopic spine surgery is far from complete, but it demonstrates the interplay of imagination and technology in developing new surgical techniques.

Percutaneous Endoscopic Discectomy

The current position of the field of endoscopic spine surgery is the result of two directions of evolution: big-to-small and small-to-big. As in other surgical fields, the progression of surgical techniques from open to more and more minimally invasive procedures has required visualization and instruments that would be endoscope based. However, the foundation for transforaminal endoscopic spine surgery was really the result of the evolution of a needle-based technique: percutaneous endoscopic discectomy.

A technique for percutaneous nonvisualized indirect spinal canal decompression—percutaneous nucleotomy—through a posterolateral approach was described by Parvis Kambin (Fig. 2) in 1973 and Hijikata et al. in 1975.2 Kambin described using a Craig cannula (Fig. 1) and Hijikata a 2.6-mm cannula. The technical challenge of achieving sufficient removal of nucleus pulposus material through a needle was addressed by Kambin and coworkers in 1986 and 1987 with the introduction of working cannulas possessing diameters up to 5 mm and flexible forceps.

The next step in the advancement of the percutaneous discectomy technique was the addition of the endoscope. The first endoscopic views of a herniated nucleus pulposus were published by Kambin et al. in 1988, and the first reported introduction of a modified arthroscope into the intervertebral disc space was reported by Forst and Hausman in 1983.11 Schreiber et al.47 and Suezawa et al.50 published their bilateral approach for a percutaneous nucleotomy under endoscopic control and described injecting indigo carmine into the disc space to stain the abnormal nucleus pulposus and annular fissures.

Percutaneous endoscopic discectomy certainly must re-
A. E. Telfeian et al.

receive a great portion of the credit for advancing endoscop-
ic spine surgery, but it also must likely take responsibility
for endoscopic spine surgery’s slow rate of acceptance as
a feasible technique by most orthopedic and neurosurgical
spine specialists. The surgical goal of percutaneous endo-
scopic discectomy is to indirectly decompress the neural
elements by selectively removing the nucleus pulposus
from the posterior one-third of the disc space. From its
origin, the technique showed promising results: Kambin
and Gellman reported a 72% success rate in 136 patients
with their percutaneous technique in 1983, but it has been
difficult to quantify the impact of such results because
they were not matched with nonoperative controls.28 Thus,
cpercutaneous endoscopic discectomy represented what is
only an indirect spinal decompression, but a direct and
very powerful new surgical approach to spinal pathology.

Kambin’s Triangle

In 1990, Parvis Kambin described a triangular safe
zone bordered by the exiting root anteriorly, the travers-
ing root medially, and the superior endplate of the lower
lumbar vertebra inferiorly.26 The anatomical description
of this safe zone allowed the field of endoscopic spine
surgery to outgrow the technique of percutaneous nucle-

dotomy, which was limited by the use of small needlelike
instruments. Kambin’s triangle was a working corridor
that allowed larger instruments and working channels to
be introduced in even closer proximity to foraminal path-
ology without injuring the exiting nerve.

Foraminoscopy

With the idea of a safe working triangle between the
exiting and traversing roots in the foramen, endoscopic
spine surgery started to leave the safety of the indigo
carmine blue–stained nucleus and explore the foramen.
In 1993 Mayer and Brock used an angled lens scope that
allowed more dorsal visualization of anular pathology.38
Foraminoscopy was described by Mathews in 199637 and
Ditsworth in 1998.9 In 1996 Kambin and Zhou described
lumbar nerve root decompression by anulectomy and de-
compression of lateral recess stenosis with the use of for-
ceps and trephines.31 In 2005 Schubert and Hoogland (Fig.
2) described their technique for transforaminal endoscop-
ic removal of a sequestered disc fragment using reamers
to expand the foraminal window by removing the ventral
portion of the superior articular process.48 Multichannel
endoscopes with larger working channels were introduced
by Tsou et al. in 199755 and Ruetten (Fig. 2) et al. in 2007.46

FIG. 1. Instruments used in and developed for endoscopic spine surgery. A: Craig needle set and cannula. B: Working-channel
endoscope with channels for irrigation and suction. C: Crown reamers for foraminal bone removal. D: Endoscopic graspers and
Kerrison punches. E: Endoscopic drill (right) and chisel (right, arrow points to exiting nerve root). F: Semibendable grasper reach-
ing cranial (right) and cephalad (left) in a foraminal decompression after placement of instrumentation.
A number of reports of the clinical success of direct endoscopic decompression of foraminal pathology would follow: Yeung (Fig. 2) and Tsou in 2002, Ruetten et al. in 2007, Ruetten et al. in 2008, Jasper et al. in 2013.

Microendoscopic surgery

In 1999 Foley (Fig. 2) et al. published their surgical experience treating far-lateral L3–4 and L4–5 herniated discs using a 25° rod-lens endoscope placed through a 16-mm-diameter tubular retractor. Instruments used in a traditional microdiscectomy procedure could now be applied under endoscopic visualization. The procedure was performed through an incision 5 cm off the midline. Mixter and Barr received credit for being the first authors to treat lumbar herniated discs by an open laminectomy and discectomy approach. With the introduction of the surgical microscope, Caspar and Yaşargil refined the open posterior approach, and they are credited with introducing the microdiscectomy procedure.

In 1999 Foley (Fig. 2) et al. published their surgical experience treating far-lateral L3–4 and L4–5 herniated discs using a 25° rod-lens endoscope placed through a 16-mm-diameter tubular retractor. Instruments used in a traditional microdiscectomy procedure could now be applied under endoscopic visualization. The procedure was performed through an incision 5 cm off the midline. Mixter and Barr received credit for being the first authors to treat lumbar herniated discs by an open laminectomy and discectomy approach. With the introduction of the surgical microscope, Caspar and Yaşargil refined the open posterior approach, and they are credited with introducing the microdiscectomy procedure.

Microendoscopic surgery

In 1999 Foley (Fig. 2) et al. published their surgical experience treating far-lateral L3–4 and L4–5 herniated discs using a 25° rod-lens endoscope placed through a 16-mm-diameter tubular retractor. Instruments used in a traditional microdiscectomy procedure could now be applied under endoscopic visualization. The procedure was performed through an incision 5 cm off the midline. Mixter and Barr received credit for being the first authors to treat lumbar herniated discs by an open laminectomy and discectomy approach. With the introduction of the surgical microscope, Caspar and Yaşargil refined the open posterior approach, and they are credited with introducing the microdiscectomy procedure.

Anterior Endoscopic Approaches

In the 1990s laparoscopic surgical techniques began to be adopted clinically; anterior endoscopic approaches were considered by some to offer possible advantages for the treatment of thoracic and lumbar disc disease. Laparoscopic lumbar discectomy was performed with an approach similar to laparoscopic abdominal surgery: pneumoperitoneum was established, and the small bowel and colon were retracted to provide access to the lumbar disc. A retroperitoneal laparoscopic lateral approach to the lumbar spine was also reported as a way to avoid laminectomy and disturbance of the facet. The disadvantages of peritoneal cavity retraction and the potential dangers of injuring the sympathetic chain, genitofemoral nerve, segmental lumbar arteries and veins, ureter, and superior hypogastric plexus made these approaches less feasible for widespread adoption.

Thoracoscopy and later video-assisted thoracoscopic surgery (VATS) were adapted for thoracic spine surgery in the early 1990s. Reports have demonstrated the capacity of VATS to provide exposure for thoracic discectomy similar to that obtained with a transthoracic approach. However, in addition to a steep learning curve, the use of VATS for the treatment of thoracic spine disease is limited by the morbidity associated with working through the chest cavity. These limitations have hindered the widespread use of VATS for thoracic discectomy and have motivated the development of minimally invasive posterior approaches, including the endoscopic lateral extracavitary and transpedicular approaches.

Innovations in Endoscopic Spine Surgery

The development of improved endoscopes and instruments, the increased experience of endoscopic spine surgeons, and the continued demand by patients for spinal surgery procedures that are as minimally invasive as possible have led to an explosion of innovation in endoscopic spine surgery. Published experience is available on transforminal versus interlaminar endoscopic approaches, cervical approaches, thoracic approaches, and approaches to the thoracolumbar junction, as well as the treatment of far-lateral disc herniations, reherniations, extradural discs, spondylothesis, radiculopathy in the setting of instrumented fusion, discitis, discogenic back pain, and spinal tumors. Other studies published include the treatment of geriatric and obese populations and the use of intraoperative MRI, lasers, and interbody...
fusion devices13,40 in endoscopic spine surgery. In the fields of nonendoscopic surgery (surgery performed with the naked eye, loupes, or a microscope) and endoscopic spine surgery, the spinal pathologies and goals of treatment are converging. The clearest difference in the two fields appears to be the method of visualization.

Direct Visualization

In order for an object to be “seen,” its image must be focused on the back of the retina. The retina is to the eye what film is to the camera. Endoscopic cameras allow us to move the “eye’s” lens remotely to the site of the surgical pathology. Two dramatic examples of the technological innovation that implements this simple idea can be seen in space exploration and military combat: unmanned probes on Mars and military drones in remote areas of conflict bring our eyes “directly” but remotely to the points of interest. Innovation enables us to work at such sites from a remote location. The history of endoscopic spine surgery is indeed brief, and although many around the world justly can take credit for its inception and early development, the greatest credit will always likely go to the surgeon for whom Kambin’s triangle is named.

References

31. Kambin P, Zhou L: History and current status of percutane-
33. Knight MT, Ellison DR, Goswami A, Hillier VF: Review of safety in endoscopic laser foraminoplasty for the manage-
34. Lew SM, Mehalic TF, Fagone KL: Transforaminal percuta-
38. Mayer HM, Brock M: Percutaneous endoscopic lumbar dis-
cotmy (PELD). Neurosurg Rev 16:115–120, 1993
42. Perez-Cruet MJ, Foley KT, Isaacs RE, Rice-Wyllie L, Wel-
lington R, Smith MM, et al: Microendoscopic lumbar disc-
S136, 2002
939, 2008
46. Ruetten S, Komp M, Merk H, Godolias G: Use of newly de-
veloped instruments and endoscopes: full-endoscopic resec-
tion of lumbar disc herniations via the interlaminar and lat-
47. Schreiber A, Suezawa Y, Leu H: Does percutaneous nucle-
otomy with discoscopy replace conventional discectomy? Eight years of experience and results in treatment of herni-
48. Schubert M, Hoogland T: Endoscopic transforaminal nucle-
otomy with foraminoplasty for lumbar disk herniation. Oper Orthop Traumatol 17:641–661, 2005
49. Slotman GJ, Stein SC: Laparoscopic L5–S1 discectomy: a cost-effective, minimally invasive general surgery—neuro-
surgery team alternative to laminectomy. Am Surg 62:64–
68, 1996
50. Suezawa Y, Jacob HA: Percutaneous nucleotomy. An alterna-
295, 1986
51. Telfeian AE: Transforaminal endoscopic solution to disk re-
reherniation post-mini-TLIF: case report. Clin Neurol Neu-
52. Telfeian AE, Choi DB, Aghion DM: Transforaminal endo-
53. Telfeian AE, Jasper GP, Francisco GM: Transforaminal endo-
sic treatment of lumbar radiculopathy after instrument-
55. Tsou PM, Yeung CA, Yeung AT: Posterolateral transforam-
inal selective endoscopic discectomy and thermal annuloplasty for chronic lumbar discogenic pain: a minimal access vi-
sualized intradiscal surgical procedure. Spine J 4:564–573, 2004
57. Yasargil M: Microsurgical operation for herniated disc. Adv 
Neurosurg 4:81, 1977
58. Yeom KS, Choi YS: Full endoscopic contralateral transfor-
aminal discectomy for distally migrated lumbar disc hernia-

Disclosures
The authors report no conflict of interest concerning the materi-
als or methods used in this study or the findings specified in this paper.

Author Contributions
Conception and design: all authors. Acquisition of data: all
authors. Analysis and interpretation of data: all authors. Drafting
the article: all authors. Critically revising the article: all authors.
Analysis and interpretation of data: all authors. Drafting
Conception and design: all authors. Acquisition of data: all
authors. Analysis and interpretation of data: all authors. Drafting
the article: all authors. Critically revising the article: all authors.
Analysis and interpretation of data: all authors. Drafting

Correspondence
Albert Telfeian, Department of Neurosurgery, Rhode Island
Hospital, 593 Eddy St., Providence, RI 02903. email: atelfeian@
lifespan.org.