The successful arthroscopic treatment of suprascapular intraneural ganglion cysts

Nikhil K. Prasad, MBChB, Robert J. Spinner, MD, Jay Smith, MD, Benjamin M. Howe, MD, Kimberly K. Amrami, MD, Joseph P. Iannotti, MD, PhD, and Diane L. Dahm, MD

Departments of Orthopedics, Physical Medicine, Radiology, and Neurosurgery, Mayo Clinic, Rochester, Minnesota; and Department of Orthopedics, Cleveland Clinic, Cleveland, Ohio

OBJECT High-resolution magnetic resonance imaging (MRI) can distinguish between intraneural ganglion cysts and paralabral (extraneural) cysts at the glenohumeral joint. Suprascapular intraneural ganglion cysts share the same pathomechanism as their paralabral counterparts, emanating from a tear in the glenoid labrum. The authors present 2 cases to demonstrate that the identification and arthroscopic repair of labral tears form the cornerstone of treatment for intraneural ganglion cysts of the suprascapular nerve.

METHODS Two patients with suprascapular intraneural ganglion cysts were identified: 1 was recognized and treated prospectively, and the other, previously reported as a paralabral cyst, was identified retrospectively through the reinterpretation of high-resolution MR images.

RESULTS Both patients achieved full functional recovery and had complete radiological involution of the intraneural ganglion cysts at the 3-month and 12-month follow-ups, respectively.

CONCLUSIONS Previous reports of suprascapular intraneural ganglion cysts described treatment by an open approach to decompress the cysts and resect the articular nerve branch to the glenohumeral joint. The 2 cases in this report demonstrate that intraneural ganglion cysts, similar to paralabral cysts, can be treated with arthroscopic repair of the glenoid labrum without resection of the articular branch. This approach minimizes surgical morbidity and directly addresses the primary etiology of intraneural and extraneural ganglion cysts.

http://thejns.org/doi/abs/10.3171/2015.6.FOCUS15201

KEY WORDS Intraneural ganglion cyst; labral tear; shoulder; unified articular (synovial) theory; suprascapular nerve; peripheral nerve imaging

SUPRASCAPULAR neuropathy has been recognized as a potential cause of shoulder pain and weakness. Along its course to innervate the supraspinatus muscle, infraspinatus muscle, and glenohumeral joint, the suprascapular nerve (SSN) passes through 2 potential points of impingement: the suprascapular notch and the spinoglenoid notch. Paralabral (extraneural) cysts are globular masses filled with mucoid material that emanate from the glenohumeral joint and can occasionally extrinsically compress the SSN at these anatomical bottlenecks. A rare variant form, the intraneural ganglion cyst, can extend within the SSN from the glenohumeral joint and assume a characteristic tubular pattern when assessed by MRI. Over the past 2 decades, the arthroscopic treatment of paralabral cysts has been thoroughly validated. Several authors have shown that it is possible to treat this condition by repairing the coexistent labral pathology, without the need to perform an open or arthroscopic decompression or a resection of the cyst. Previously, an open approach was employed to treat intraneural ganglion cysts of the SSN by resecting the articular branch and decompressing or resecting the cyst.
Given the unifying articular theory, we predicted that it should be possible to treat suprascapular intraneural ganglion cysts in the same way as paralabral cysts—with repair of the capsulolabral defect in the joint of origin. Here, we present 2 cases of suprascapular intraneural ganglion cysts, scrutinized with high-resolution MRI and treated with arthroscopic repair of an associated paralabral tear, without resection of the articular branch.

Illustrative Cases

All retrospective reviewing of patient data was performed under the auspices of the institutional review board at the Mayo Clinic. Both cases were hypothesis driven. In Case 1, an arthroscopic approach was employed for the first time for a suprascapular intraneural cyst based on its analogous nature to a paralabral cyst. Case 2, which had been documented (and treated) as a paralabral cyst, had the MRI appearance of and was subsequently reinterpreted as an intraneural ganglion cyst.

Case 1

History and Examination

A 38-year-old woman presented with a 2-week history of gradually worsening, atraumatic, right posterior shoulder pain radiating down the arm and associated with paresthesia in the palm. Examination revealed mild denervation atrophy of the infraspinatus and supraspinatus muscles with preserved function in the deltoid, triceps, wrist and finger extensors, and latissimus dorsi muscles. She had mildly reduced sensation in the volar forearm, and the Tinel sign was positive in the infracavicular region, radiating to the forearm. Electrodiagnostic studies were consistent with a suprascapular neuropathy proximal to the suprascapular notch, with denervation, reinnervation, and fibrillations in the infraspinatus and supraspinatus muscles. There were no electromyography (EMG) abnormalities noted in the ipsilateral deltoid or biceps muscles.

The MR image, which was previously described by our group, revealed a labral tear posterior to the biceps labral complex with a well-defined narrow neck emanating from the tear (Fig. 1 left). The cyst traveled along the course of the SSN through the spinoglenoid and suprascapular notches, toward the upper trunk of the brachial plexus. The supraspinatus and infraspinatus muscles exhibited early signs of denervation with intramuscular edema but no atrophy. All other C5- and C6-innervated muscles within the radiological field of view appeared normal. Shoulder MR arthrography demonstrated intraarticular contrast extending from the labral tear as a narrow neck into the intraneural cyst (Fig. 1 right). Preoperative ultrasound confirmed these findings and provided a baseline for comparison with subsequent assessments.

Treatment

The patient underwent an arthroscopic evaluation of the right shoulder (Fig. 2). Anterior and posterior arthroscopy portals were used, the former through direct visualization of the rotator interval. No articular surface pathology was identified, but there was extensive fraying of the superior labrum, with a tear along the posterosuperior labrum extending from the 10 to 12 o'clock position. A probe was placed beneath the labral tear to identify the cyst. As the posterosuperior glenoid was rasped in preparation for repair, a small amount of cyst fluid was noted to enter the joint. The labral tear was repaired with the placement of No. 2 sutures in a mattress formation, anchored to a Bio-SutureTak. The articular branch of the SSN was not resected.

Posttreatment Course

Two weeks after surgery, there was 50% resorption of the cyst as detected by ultrasonography (Fig. 3). By 3 months after surgery, MRI revealed complete resolution of the cyst (Fig. 4) and EMG demonstrated reinnervation. One year postoperatively, there was complete resolution of the cyst as measured by ultrasonography and MRI. The patient made a complete functional recovery.

Case 2

History and Examination

A 27-year-old woman was evaluated for right shoulder pain and a nontender mass in the supraclavicular fossa.
The shoulder pain was exacerbated by overhead activities, but the patient’s primary concern was the cosmetic appearance of the neck mass. There was no history of trauma, and the patient was not an athlete. Neurovascular function of the right upper limb was intact. MR images showed a ganglion cyst that was thought to be a paralabral cyst\(^1\) (Fig. 5) extending from a torn edge of the superior labrum anteroposterior (SLAP) Type II to the supraclavicular fossa.

Treatment

A combined arthroscopic and open approach was used—the former to treat the labral tear and the latter to excise the subcutaneous portion of the cyst with an incision made directly over it. As the pathology was thought to be extraneural, no attempt was made to resect the articular nerve branch at the time of operation. The resected segment of cyst did not contain any neural tissue.

Posttreatment Course

No electrodiagnostic studies were performed before or after the operation. The patient achieved functional improvement secondary to relief of shoulder pain, and both gross and radiological involution of the cyst occurred by the 3-month follow-up (Fig. 6).

The cyst’s morphology was intriguing\(^9\) and seemed reminiscent of an intraneural ganglion cyst, with a tubular proximal extension along the course of the SSN. With the assistance of the senior author, we were able to obtain all relevant clinical data and the original imaging. Three-dimensional reconstructions of the images confirmed our suspicions that it was an intraneural ganglion cyst with a tubular morphology (Fig. 7A and B) and with evidence of crossover (in the upper trunk), descent (in the divisions), and ascent as far as the C-5 and C-6 nerves (Fig. 7C). The largest collection of cyst fluid appeared to be in a cutaneous branch of the SSN. There was subtle MRI evidence of denervation changes in the supraspinatus and infraspinatus muscles, i.e., increased signal on short-tau inversion-recovery (STIR) sequences, consistent with an occult neuropathy of the SSN.

Discussion

The 2 illustrated cases in this study represent an important milestone in our understanding of the pathophysiology and treatment of intraneural ganglia. The cases show that intraneural ganglion cysts of the shoulder share a common etiology with paralabral cysts and can be treated in a similar fashion. These findings are consistent with the unifying theory for intraneural ganglia\(^3,4\) which explains the development of both intraneural and extraneural ganglion cysts (Fig. 8) and allows us to target treatment to the primum movens (the joint) and predict surgical outcome. While we acknowledge that cyst decompression, either ar-
N. K. Prasad et al.

throscopically (Case 1) or with an open approach (Case 2), may provide immediate relief of symptoms, we do not believe that it is necessary for long-term success of treatment and should not be regarded as the primary therapeutic objective.

The most widely accepted theory for the pathogenesis of ganglion cysts is that joint fluid egresses into the pararticular tissues of a capsulolabral tear. The strength of the association between labral tears and both paralabral (extraneural)7–10,17,21,36,39 and intraneural ganglion cysts30 has been established. We have also previously demonstrated30 and herein confirmed a similar association between posterosuperior labral tears and intraneural ganglion cysts. The intraneural ganglion cysts in Cases 1 and 2 obey the same principles of formation as previously reported suprascapular intraneural ganglia:20,22,24,25,29–31,37 1) They originate from the articular nerve branch that supplies a synovial joint; 2) they follow the path of least resistance; and 3) the size, extension, and compressive effect of the cyst fluctuates based on dynamic joint pressures. These principles also apply to extraneural cysts, except that the joint connection is via a nonneural pedicle. In Case 1, the suprascapular intraneural ganglion cyst was identified preoperatively.33 The joint connection was established by MRI, and the communication through the labral tear was documented by MR arthrography. The cyst extended longitudinally toward the retroclavicular brachial plexus. Given our experience with this case and others,30,31,33 we were able to reinterpret the imaging findings of Case 2. The cyst in Case 2 followed the same course as in Case 1, but it extended even more proximally along the brachial plexus (Fig. 7). We believe that the supraclavicular mass that was resected was actually a portion of the intraneural ganglion cyst tracking into a cutaneous branch of the SSN. The existence of this branch, though not widely known, has been demonstrated by several authors3,11,14,38 to consist of fine filaments that ramify with the lateral supraclavicular nerve.1 Given the small caliber of this twig and the large cyst, it is understandable that the nerve fascicle was not seen in the resected specimen (note that we have seen this in many cases of resected articular branches of peroneal intraneural ganglia). Alternatively, the subcutaneous cyst may represent extraneural rupture and cyst encapsulation.

articular tissues from a capsulolabral tear. The strength of the association between labral tears and both paralabral (extraneural)7–10,17,21,36,39 and intraneural ganglion cysts30 has been established. We have also previously demonstrated30 and herein confirmed a similar association between posterosuperior labral tears and intraneural ganglion cysts. The intraneural ganglion cysts in Cases 1 and 2 obey the same principles of formation as previously reported suprascapular intraneural ganglia:20,22,24,25,29–31,37 1) They originate from the articular nerve branch that supplies a synovial joint; 2) they follow the path of least resistance; and 3) the size, extension, and compressive effect of the cyst fluctuates based on dynamic joint pressures. These principles also apply to extraneural cysts, except that the joint connection is via a nonneural pedicle. In Case 1, the suprascapular intraneural ganglion cyst was identified preoperatively.33 The joint connection was established by MRI, and the communication through the labral tear was documented by MR arthrography. The cyst extended longitudinally toward the retroclavicular brachial plexus. Given our experience with this case and others,30,31,33 we were able to reinterpret the imaging findings of Case 2. The cyst in Case 2 followed the same course as in Case 1, but it extended even more proximally along the brachial plexus (Fig. 7). We believe that the supraclavicular mass that was resected was actually a portion of the intraneural ganglion cyst tracking into a cutaneous branch of the SSN. The existence of this branch, though not widely known, has been demonstrated by several authors3,11,14,38 to consist of fine filaments that ramify with the lateral supraclavicular nerve.1 Given the small caliber of this twig and the large cyst, it is understandable that the nerve fascicle was not seen in the resected specimen (note that we have seen this in many cases of resected articular branches of peroneal intraneural ganglia). Alternatively, the subcutaneous cyst may represent extraneural rupture and cyst encapsulation.

The most widely accepted theory for the pathogenesis of ganglion cysts is that joint fluid egresses into the pararticular tissues of a capsulolabral tear. The strength of the association between labral tears and both paralabral (extraneural)7–10,17,21,36,39 and intraneural ganglion cysts30 has been established. We have also previously demonstrated30 and herein confirmed a similar association between posterosuperior labral tears and intraneural ganglion cysts. The intraneural ganglion cysts in Cases 1 and 2 obey the same principles of formation as previously reported suprascapular intraneural ganglia:20,22,24,25,29–31,37 1) They originate from the articular nerve branch that supplies a synovial joint; 2) they follow the path of least resistance; and 3) the size, extension, and compressive effect of the cyst fluctuates based on dynamic joint pressures. These principles also apply to extraneural cysts, except that the joint connection is via a nonneural pedicle. In Case 1, the suprascapular intraneural ganglion cyst was identified preoperatively.33 The joint connection was established by MRI, and the communication through the labral tear was documented by MR arthrography. The cyst extended longitudinally toward the retroclavicular brachial plexus. Given our experience with this case and others,30,31,33 we were able to reinterpret the imaging findings of Case 2. The cyst in Case 2 followed the same course as in Case 1, but it extended even more proximally along the brachial plexus (Fig. 7). We believe that the supraclavicular mass that was resected was actually a portion of the intraneural ganglion cyst tracking into a cutaneous branch of the SSN. The existence of this branch, though not widely known, has been demonstrated by several authors3,11,14,38 to consist of fine filaments that ramify with the lateral supraclavicular nerve.1 Given the small caliber of this twig and the large cyst, it is understandable that the nerve fascicle was not seen in the resected specimen (note that we have seen this in many cases of resected articular branches of peroneal intraneural ganglia). Alternatively, the subcutaneous cyst may represent extraneural rupture and cyst encapsulation.
It has been consistently demonstrated that treating labral pathology leads to cyst involution, regardless of whether the cyst is decompressed intraoperatively or not. However, decompression of paralabral cysts without addressing the labral tear often leads to recurrence. Given these findings, results from the operative treatment of SSN intraneural ganglia can also be predicted. In both of the reported cases, there was successful treatment of intraneural ganglia without resection of the articular nerve branches (intentionally in Case 1 and unknowingly in Case 2). The cyst decompression in Case 1 and the open resection of the subcutaneous portion of the cyst in Case 2 were likely not necessary; we believe that the cyst would have spontaneously resolved after labral repair. Addressing the labral tear can replace the need to disconnect the articular branch to allow cyst resolution and promote neurological recovery. Labral tears may be difficult to identify by preoperative MRI; however, arthrography may be useful in revealing subtle pathology. We believe that suprascapular intraneural ganglia are always associated with labral tears, but certain authors have reported otherwise. Until now, open surgery has been used to resect intraneural ganglion cysts of the SSN, and if the associated labral tear is not identified or treated, it is imperative to resect the articular nerve branch. However, failure to address the labral tear may result in suboptimal recovery and recurrence. In summary, the therapeutic objectives in decreasing order of importance are repair of labral pathology, resection of the cystic articular nerve branch, and decompression of the cyst. Cyst decompression, by itself, may be performed before, during, or after surgery to provide symptomatic relief and reduce pressure on the nerve, but it does not address the primary pathology or prevent recurrence. Our current understanding and surgical approach represents a paradigm shift.

Much of what we have learned about intraneural ganglion cysts has been extrapolated from cases affecting the most common site of occurrence—the common peroneal nerve at the superior tibiofibular joint. The small size of this joint makes arthroscopic exploration difficult. The larger joint cavities associated with shoulder- and hip-derived intraneural ganglia offer the opportunity to study the condition from an arthroscopic perspective. General experience in cases at the shoulder confirms the joint-related pathogenesis of these cysts and the advantages of the arthroscopic approach (i.e., direct, safe treatment of the labral tear and indirect, effective treatment of the intraneural cyst and neuropathy). We uncovered, at the acetabulofemoral joint, a single case of an arthroscopically treated “perineural cyst” of the sciatic nerve near the hip joint. The authors of that published study believed that the cyst was extraneural, and they simply excised the cyst wall. However, we believe that the cyst was intraneural and that there is likely to have been associated acetabular labral pathology that was not addressed. Likewise, other paralabral cysts at the shoulder region may well be intraneural ganglion cysts, as in our Case 2.

Conclusions

Rare suprascapular intraneural ganglion cysts have a characteristic clinical and radiological pattern. In keeping with the unifying articular theory, intraneural ganglion cysts share the same clear principles of formation and treatment as the more common paralabral cysts. Learning from current treatment algorithms for paralabral cysts, we...
We appreciate the assistance of Alexandra P. Wolanskyj, MD, and David Factor of Rochester, Minnesota.

References

believe that intraneural ganglia can be managed without resection of the articular nerve branch or decompression of the cyst, which will gradually involute over time if the causative labral tear is repaired.

Acknowledgments

We appreciate the assistance of Alexandra P. Wolanskyj, MD, and David Factor of Rochester, Minnesota.

Disclosure
Dr. Smith owns stock in Sonex Health and Tenex Health; holds a patent with Tenex Health; holds a license agreement with Tenex Health; and is the chief medical officer of Sonex Health. Dr. Iannotti holds a patent with the Cleveland Clinic and DePuy Synthes.

Author Contributions
Conception and design: Spinner, Smith, Dahm. Acquisition of data: Spinner, Smith, Howe, Iannotti, Dahm. Analysis and interpretation of data: Spinner, Prasad, Howe, Amrami, Dahm. Drafting the article: all authors. Critically revising the article: Spinner, Prasad. Reviewed submitted version of manuscript: Spinner, Prasad. Study supervision: Spinner.

Correspondence
Robert J. Spinner, Mayo Clinic, Gonda 8-214S, Rochester, MN 55905. email: spinner.robert@mayo.edu.